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April 2004 
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Materials of compositions PbBi6M2O15 and (PbO)n(BiMO4), where M = V, P, As and 

n = 1, 2, 4 were prepared via solid state reaction. These materials were characterised 

using X-ray diffraction (XRD), density measurement, inductively coupled plasma-

atomic emission spectrometry (ICP-AES), ac impedance spectroscopy, differential 

thermal analysis (DTA), thermogravimetry analysis (TGA), Fourier-transform 

infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). 

 

Complete solid solution series were obtained in the PbBi6V2O15-PbBi6P2O15, 

PbBi6V2O15-PbBi6As2O15 and PbBi6P2O15-PbBi6As2O15 systems. All the materials 

were isostructural, and crystallised in orthorhombic symmetry. However, the cell 

parameter a of these materials was twice those reported in JCPDS. The conductivity 

of these materials decreased in the order of PbBi6V2O15 > PbBi6As2O15 > 

PbBi6P2O15. PbBi6V2O15 is an oxide ion conductor as it has a transference number of 

0.8 above 650ºC. 
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Substitution of Sr for Pb in PbBi6V2O15 resulted in the formation a new material of 

SrBi6V2O15 with higher conductivity. On the other hand, Pb in both PbBi6V2O15 and 

PbBi6As2O15 could be replaced by Na and Bi, resulting in the formation of 

NaBi13V4O30 and NaBi13As4O30. Besides successfully suppressing the phase 

transition observed in PbBi6V2O15, these materials had higher conductivity compared 

to that of PbBi6(V/As)2O15. The conductivity of these materials was in the range of ~ 

10-3 ohm-1 cm-1 at 800°C. Conductivity decreased in the order of NaBi13V4O30 > 

SrBi6V2O15 > PbBi6V2O15. These materials appeared to be oxide ion conductors. 

 

Complete solid solution series were formed in the Pb2BiPO6-Pb2BiAsO6, Pb4BiPO8-

Pb4BiVO8, Pb4BiPO8-Pb4BiAsO8 and Pb4BiVO8-Pb4BiAsO8 systems. The properties 

determined generally agreed with those reported; these materials were mixed oxide 

ion conductors. The conductivity decreased in the order of Pb2BiMO6 > PbBiMO5 > 

Pb4BiMO8, and V > As > P. 
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Bahan-bahan dengan komposisi PbBi6M2O15 dan (PbO)n(BiMO4), di mana M = V, P, 

As dan n = 1, 2, 4 telah disediakan melalui tindak balas keadaan pepejal. Bahan-

bahan telah dicirikan dengan mengunakan pembelauan sinar-X (XRD), pengukuran 

ketumpatan, plasma aruhan keduaan-spektroskopi penyebaran atom (ICP-AES), 

spektroskopi impedans ac, analisis perbezaan terma (DTA), analisis termogravimetri 

(TGA), spektroskopi inframerah transformasi Fourier (FT-IR) dan spektroskopi 

imbasan electron (SEM). 

 

Larutan pepejal lengkap telah diperolehi dalam sistem PbBi6V2O15-PbBi6P2O15, 

PbBi6V2O15-PbBi6As2O15 dan PbBi6P2O15-PbBi6As2O15. Semua bahan mempunyai 

simetri yang sama, dan mereka dihablurkan dalam simetri ortorombik. Tetapi, 

parameter unit cell a bahan-bahan ini adalah dua kali ganda daripada yang dilaporkan 

dalam JCPDS. Kekonduksian bahan-bahan ini menurun dalam susunan PbBi6V2O15 

> PbBi6As2O15 > PbBi6P2O15. PbBi6V2O15 adalah konduktor ion oksida disebabkan ia 

mempunyai nombor pindahan 0.8 pada suhu 650ºC ke atas. 
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Pertukaran Sr untuk Pb dalam PbBi6V2O15 telah menghasilkan pembentukan satu 

bahan baru SrBi6V2O15 dengan kekonduksian yang lebih tinggi. Selain itu, Pb dalam 

PbBi6V2O15 and PbBi6As2O15 boleh diganti dengan Na dan Bi, mengakibatkan 

panghasilan NaBi13V4O30 dan NaBi13As4O30. Selain daripada berjaya menghilangkan 

peralihan fasa yang dilihat dalam PbBi6V2O15, bahan-bahan ini mempunyai 

kekonduksian yang lebih tinggi daripada PbBi6(V/As)2O15. Kekonduksian bahan-

bahan ini adalah dalam lingkungan ~ 10-3 ohm-1 cm-1 pada suhu 800°C. 

Kekonduksian menurun dalam susunan NaBi13V4O30 > SrBi6V2O15 > PbBi6V2O15. 

Bahan-bahan ini merupakan konduktor ion oksida. 

 

Larutan pepejal lengkap telah dibentuk dalam sistem Pb2BiPO6-Pb2BiAsO6, 

Pb4BiPO8-Pb4BiVO8, Pb4BiPO8-Pb4BiAsO8 dan Pb4BiVO8-Pb4BiAsO8. Kelakuan 

yang ditentukan adalah agak sama dengan yang dilaporkan; bahan-bahan ini 

merupakan konduktor campuran ion oksida. Kekonduksian menurun dalam susunan 

Pb2BiMO6 > PbBiMO5 > Pb4BiMO8, dan V > As > P. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Ionic Conductivity and Solid Electrolytes  

Electrical conduction in solid materials usually occurs by the long range diffusion of 

either electrons or ions. This has therefore created many different characteristics of 

electrical conductivity, such as metallic conductivity, superconductivity, 

semiconductivity and ionic conductivity.  

 

Ionic conductivity occurs in materials known variously as solid electrolytes, 

superionic conductors or fast ion conductors. Many of the crystalline materials such 

as NaCl or MgO, have low ionic conductivities because the atoms or ions can only 

vibrate at their atomic positions. However, solid electrolytes are an exception. Solid 

electrolytes usually have freely moving cations (e.g. H+, Na+, Li+, Ag+) or anions 

(e.g. O2-, F-) that move throughout the crystalline structure.  

 

Figure 1.1 shows the different types of electrical conductivities and examples of the 

different materials. Solid electrolytes have conductivities that fall between that of the 

semiconductor and aqueous electrolyte. 

 

Solid electrolytes are, therefore, intermediate between normal crystalline solids with 

regular three dimensional structures as well as immobile atoms or ions and liquid 

electrolytes, which do not have regular structures but mobile ions. This characteristic 

is supported by data on the relative entropies of polymorphic transitions and melting.  



 xx 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1.1: Electrical conductivities of selected common substances and 
representative solid electrolytes (Greenblatt, 1994) 

 
 

Solid electrolytes are often stable only at high temperatures. At low temperatures, 

they may undergo a phase transition to give a polymorph with a low ionic 

conductivity and a more usual type of crystalline structure (Figure 1.2). Besides, 

solid electrolytes may also form as a consequence of a gradual increase in defect 

concentration with increasing temperature.  

 

 

 

 

 

 

 

 

Figure 1.2: Solid electrolytes as intermediate between normal crystalline solids and 
liquids (West, 1999) 
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Intensive research has been carried out on solid electrolytes in recent years as these 

materials offer a wide range of potential technological applications, such as high-

energy-density batteries, fuel cells, sensors, electrochromic materials for both optical 

display and ‘smart window’ devices, low-cost electrolysis of water and selective 

atomic filter. Some of these devices are available commercially. For example, 

oxygen detectors for automotive pollution-control systems employ solid O2- 

conductors and Li+ batteries for electronic equipment.  

 
 
1.1.1 Ionic Conduction 

The electrical conductivity is defined as the constant of proportionality between the 

flux j of charge and the electric field, E 

                                                               j = σE                                                        (1.1)   

If  

                                                                j = eiJ                                                       (1.2)    

with ei = charge of the conducting species, i 

        J = density of the current 

and  

                                                             
Ei

i
n

J
=µ                                                     (1.3)  

where µi = mobility of the species 

           ni = number of charge carrier  

 

therefore, for any material and charge carrier, the specific conductivity is given by  

                                                        ∑=
i

iii µenσ                                                    (1.4) 
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For ionic conductivity,  

                                                          σ = Nioneµion                                                   (1.5) 

where Nion = number of ions which can change their position under the influence of 

an electric field 

           µion = the mobility of these ions 

                                                                                              (Elliott, 1998; West, 1999) 

 

In order for the ions to move through a crystalline solid, they must have sufficient 

energy to pass over an energy barrier and there must be empty lattice sites for the 

ions to jump into. Thus, for an intrinsic conduction, Nion depends on the vacancy 

concentration caused by Schottky or Frenkel defects. 

 

Transference number, ti is defined as the ratio of the partial current generated by 

migration of species i to the total current generated by all conductive species. 

Therefore, 

                                                            
∑

=

i
i

i
i

σ

σ
t                                                     (1.6) 

For an ideal ionic conductor, transference number ti = 1 (Kudo and Fueki, 1989). 

 

Conductivities are usually temperature dependent, and for all materials, except 

metals, the conductivity increases with increasing temperature. 
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The temperature dependence of ionic conductivity is usually given by the Arrhenius 

equation, where graphs of logeσ against T-1 should give straight lines of slope 
R

Ea−
. 

                                            )
T

exp(
R

E
A a−

=σ                                               (1.7) 

where Ea = activation energy 

           R = universal gas constant 

           T = absolute temperature, K 

           A = pre-exponential factor, which depends on the vibrational frequency of the 

potentially mobile ions and some structural parameters 

                                                                                                                    (West, 1999) 

 

For an ionic conduction to take place, there are certain conditions that must be 

satisfied: 

1. A large number of the ions of one species should be mobile (i.e. a large value 

of n in the equation σ = neµ). 

2. There should be a large number of empty sites available for the mobile ions to 

jump into.  

3. The empty and occupied sites should have similar potential energy with a low 

activation barrier for jumping between neighbouring sites.  

4. The structure should have a framework, preferably 3D, permeated by open 

channels through which mobile ions may migrate. 

5. The anion framework should be highly polarisable. 
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Even when all these conditions are met, the ionic conduction may still be affected by 

microstructural factors such as grain boundaries, grain size, pores size and between 

grain-grain contact. However, these effects have not been studied experimentally in 

great detail. 

 

1.2 Solid Solutions 

A solid solution is basically a crystalline phase that can have variable composition. 

As with doped crystals, simple solid solutions are divided into two types: 

substitutional solid solutions in which the atom or ion that is being introduced 

directly replaces an atom or ion in the parent structure and interstitial solid solutions 

in which the introduced species occupies a site that is normally empty and no ions or 

atoms are left out.  

 

Doping is an important mechanism in preparing solid solutions. Usually, doping with 

aliovalent cations (the substituted ions are ions of different charge) will result in 

creation of vacancies or interstitials (ionic compensation) or electrons or holes 

(electronic compensation). Therefore, substituting a cation of lower valence may 

result in creating anion vacancies, thus, increasing the oxygen vacancies in the oxide 

ion conductor and consequently increasing the conductivity. 

 

In solid solution formation, ions of similar size may substitute for each other easily 

and extensive solid solutions could form which are stable at all temperatures; the 

enthalpy of mixing of such similar-sized ions is likely to be small and the driving 

force for solid solution formation is the increased entropy. Solid solutions may form 
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at high temperatures if substituting ions differ in size by 15 to 20%, where the 

entropy term is able to offset the positive enthalpy term. With ions that differ in size 

by more that ~ 30%, however, solid solutions are normally not expected to form. 

 

Solid solution formation is very temperature dependent. Thus, extensive solid 

solutions often form at high temperatures whereas at lower temperatures, these may 

be more restricted or practically non-existent. 

 

In order to form a complete solid solution, it is essential that the end members are 

isostructural; however, the reverse is not necessarily true. 

 

1.3 Oxide Ion Conductors and Their Applications 

A very interesting subgroup of solid electrolytes is the materials that display oxygen 

ion conductivity, known as oxide ion conductors, where the oxide ions are the charge 

carriers.  

 

Oxide ion conductors have been with us for over a century. The first application was 

by Nerst in around 1900, who used stabilised zirconia as filaments in his 

revolutionary ‘glower’ electric lights, driven by the need to replace dirty and 

dangerous candles and gas lamps. Remarkably, the same basic material, now known 

as yttria-stabilised zirconia, is the key solid electrolyte component currently in 

various solid oxide fuel cell and sensor applications. 

 


