UNIVERSITI PUTRA MALAYSIA

SIDE-LIT WINDOW DESIGN FOR OPTIMUM DAYLIGHTING IN LIBRARY READING AREAS

NUR DALILAH DAHLAN.

FRSB 2005 5
SIDE-LIT WINDOW DESIGN FOR OPTIMUM DAYLIGHTING IN LIBRARY READING AREAS

By

NUR DALILAH DAHLAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Master Science

December 2005
DEDICATION

This thesis is dedicated to:

my beloved parents, Dahlan Ismail and Hamidah Bidin.

Thank you very much for

all your love, patience and sacrifice...
SIDE LIT WINDOW DESIGN FOR OPTIMUM DAYLIGHTING IN LIBRARY READING AREAS

By

NUR DALILAH DAHLAN

December 2005

Chairman: Ar. Professor Dato' Elias bin Salleh, PhD
Faculty: Design and Architecture

Conventional tropical building designs are experiencing new paradigm in its environmental response to improve lighting ambience and users’ comfort by exploiting daylighting. This research focused on accessing existing daylight factors, illuminance levels, users’ preference and their perception towards daylit library reading areas. The performance of daylighting applied in library design in tropical country like Malaysia is evaluated based on their Side-Lit Window Design (SLWD). Daylighting evaluation is done through three methodologies, namely, via Field Measurement; Computer Simulation and User Survey. Reading areas in three libraries have been identified as case studies. The libraries selected are Perpustakaan Sultan Abdul Samad (L.1), Universiti Putra Malaysia (UPM), Perpustakaan Tun Abdul Razak 1 (L.2), Universiti Teknologi MARA (UiTM) and the Main Library of International Islamic University of Malaysia (L.3). By applying the Window to Wall Ratio (WWR) and Window to Floor Ratio (WFR), each window design from the case study is classified into three Typical Daylighted Bays (TDB), which are; low WFR (0.2) with moderate headroom height (3m high); high WFR (0.4) with moderate headroom height and high WFR with high headroom height (4 m).
Illumination level readings are collected at three separate periods of a day, namely, in the morning, afternoon and evening. Measurements are indicated using portable Konica-Minolta Illuminance Meter T10 at 7 'P' test points 1m apart from each other starting from the windows of each TDB. Parametric analyses using RadianceIES predicted potential window and interior criteria applicable in designing of future daylighting designs in large public indoor areas. The simulations are generated under ‘10K CIE Overcast Sky’ file to predict daylighting performance during worst case scenario affects in a tropical country. Furthermore, the survey carried out measured users’ comfort and awareness according to impacts shown in relation to three different SLWD. The responses are recorded via questionnaires issued to them at each of the selected TDB. The surveys are performed during diurnal operation hours of the particular libraries.

Findings revealed that window design at the reading area in L.3 with WWR of 0.76, WFR of 0.43 and headroom height of 4m allowed sufficient daylight transmittance. However, users at this particular TDB complaint of too much daylighting within 7m distance from the windows. Further parametric analyses revealed that at WWR of 0.5 achieved a close approximate of DF with WWR of 0.76. Therefore SLWD with WWR of 0.5 can promote effective daylighting up to 3% of DF within 4m distance from the windows in deep interior building such as libraries.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

REKABENTUK TINGKAP PENCAHAYAAN SISI BAGI OPTIMUM PENCAHAYAAN SIANG DI RUANG BACAAN PERPUSTAKAAN

Oleh

NUR DALILAH DAHLAN

Disember 2005

Pengerusi: Ar. Profesor Dato' Elias bin Salleh, PhD

Fakulti: Rekabentuk dan Senibina

Rekabentuk bangunan-bangunan sedia ada di negara-negara beriklim tropikal kini mengalami anjakan paradigma melalui respon persekitarannya bagi membaiki persekitaran pencahayaan dan keselesaan para pengguna. Penyelidikan ini memberi tumpuan kepada penilaian Faktor Cahaya Siang (FCS), tahap penerangan, keutamaan dan persepsi pengguna terhadap ruang bacaan di perpustakaan yang diterangi cahaya siang. Aplikasi penggunaan pencahayaan siang di dalam rekabentuk perpustakaan di negara beriklim topikal seperti Malaysia dinilai berpandukan Rekabentuk Tingkap melalui Pencahayaan Sisi (RTPS). Penilaian terhadap pencahayaan siang telah dilaksanakan melalui tiga kaedah iaitu melalui Pengukuran Lapangan; Simulasi Komputer dan Survey terhadap penggunaan sesuatu ruang. Ruang pembacaan dalam tiga perpustakaan telah dikenalpasti sebagai kajian kes. Perpustakaan yang telah dipilih adalah Perpustakaan Sultan Abdul Samad (L.1), Universiti Putra Malaysia (UPM), Perpustakaan Tun Abdul Razak 1 (L.2), Universiti Teknologi MARA (UiTM) dan Perpustakaan Utama di Universiti Islam Antarabangsa Malaysia (L.3). Dengan menggunakan Nisbah Tingkap kepada Dinding (NTD) dan Nisbah Tingkap kepada Lantai (NTL) setiap rekabentuk tingkap
yang dipilih dari kajian kes telah diklasifikasikan mengikut tiga Ruang Lazim yang Dicahayai (RLC) iaitu; NTL yang rendah (0.2) dengan ketinggian ruang yang sederhana (3m); NTL yang tinggi (0.4) dengan ketinggian ruang yang sederhana dan NTL yang tinggi dengan ketinggian ruang yang tinggi (4m).

Tahap pencahayaan di ruang pembacaan telah dikumpul pada tiga masa yang berbeza iaitu pada waktu pagi, tengah hari dan petang. Pengukuran ditentukan dengan menggunakan Konica-Minolta Iluminance Meter T10 yang mudah alih di tujuh titik ujian berjarak 1m dari satu sama lain dan bacaan diambil bermula dari tingkap di setiap RLC. Analisa parametrik dengan menggunakan ‘RadianceIES’ meramalkan potensi sesuatu tingkap dan ciri-ciri dalaman sesuai dalam menyediakan rekabentuk pencahayaan terkini bagi ruang-ruang dalaman yang besar. Simulasi telah dijalankan berpandukan fail ‘10K CIE Overcast Sky’ bagi meramalkan penggunaan pencahayaan siang semasa ‘worst case scenario’ yang memberi kesan kepada negara beriklim tropikal. Di samping itu, kaedah mengukur keselesaan pengguna dan kesedaran mereka terhadap impak yang dihasilkan mengikut RTPS yang berbeza. Respon pengguna telah direkodkan dengan menggunakan borang soal selidik yang diberikan di setiap RLC terlibat. Pengukuran dilaksanakan pada waktu siang di setiap perpustakaan tersebut.

Dapatan yang ditemui menyatakan bahawa rekabentuk tingkap di ruang pembacaan di L.3 dengan NTD sebanyak 0.76, NTL sebanyak 0.43 dan ketinggian ruang sebanyak 4m membenarkan pencahayaan yang cukup. Walau bagaimanapun, pengguna di RLC tersebut mengadu bahawa keadaan pencahayaan yang terdapat dalam lingkungan 7m dari tingkap sangat terang. Analisis parametrik lanjutan
menjelaskan bahawa NTD sebanyak 0.5 mendapat bacaan FCS yang hampir sama dengan FCS dengan NTD sebanyak 0.76. Oleh yang demikian, RTPS dengan menggunakan NTD sebanyak 0.5 mempunyai potensi untuk menggalakkan pencahayaan secara efektif iaitu sebanyak 3% (FCS) dari 4m jarak dari tingkap dalam bangunan-bangunan besar seperti perpustakaan.
ACKNOWLEDGEMENT

First and foremost, I thank Allah Almighty for his mercy and guidance in the accomplishment of this study. The study was financed by the scholarship grant from University Putra Malaysia (UPM) and the Government of Malaysia.

The deepest gratitude goes to Ar. Prof. Dato’ Dr. Elias bin Salleh. As the Chairman of the supervisory committee, without your prompt opinions and compassion to lead me in my study, this book would not be completed. I will never forget that you were the one that guide me to build up my aptitudes in the Architectural Science field at an early stage of my study. No mere words can ever repay what you have done to me. Not forgetting also to Assoc. Prof. Dr. Puteri Shireen Jahn Kassim from Kulliyyah of Architecture and Environmental Design (KAED), International Islamic University of Malaysia (IIUM) who welcomed me in her lab and taught me everything I wanted to know. To Ar. Assoc. Prof. Dr. Azizah Syed Salim, and Madam Sumarni Ismail from the Department of Architecture, Faculty of Design and Architecture, UPM thank you for being a friend and providing me with close supervision when ever I needed them. Lastly, to all my supervisors, thank you very much for showing me the way to excel in my study.

A special appreciation is dedicated to the Dean of Faculty of Design and Architecture, Assoc. Prof. Dr Mustafa Kamal Mohd. Shariff, for his many support and encouragement. Not forgetting also to Prof. Dr Azni Zain Ahmed (Faculty of Applied Sciences, UiTM), Dr. Sharifah Fairuz Syed Fadzil (School of Housing, Building and Planning, USM), Dr Abdul Razak Sapian (KAED, IIUM), Mr. Poul E.
Kristensen and Mr. Steve A. Lojuntin (MECM, Low Energy Office Building Project) for your kindness and generous guidance.

Much appreciation is dedicated to Madam Badilah Saad, Acting Chief Librarian of UPM, Madam Hajah Paiza Idris, Chief Librarian of UiTM and Assoc. Prof. Syed Salim Agha, Chief Librarian of IIUM for their prompt consideration. Not forgetting also to Ir. Alauddin Abdul Ghani (UPM), Mr. Mohd. Fuad b. Mahmood (UPM), Mr. Hafit Husin (IIUM), Mr. Haron Wee Ah Boo (UiTM), Mr. Kamaruddin Sadeli (UiTM), Mr. Ahmad Kusin (UM), Mr. Husam (IIUM), Madam Aziah (IIUM) and Mr. Rosli (IIUM) for their assistance. Special thanks go to all the respondents from Perpustakaan Sultan Abdul Samad, UPM, Perpustakaan Tun Abdul Razak I, UiTM and the Main Library of IIUM.

Last but not least, the utmost gratitude goes to my beloved mother, father, brothers and sister for their wise advices, patience, understanding, sacrifices and tolerance during the course of my study. Thank you once more from the bottom of my heart.

All of You Are the Light of My Life
I certify that an Examination Committee met on 23rd December 2005 to conduct the final examination of Nur Dalilah Dahlan on her Master of Science thesis entitled “Slide-lit Window Design for Optimum Daylighting in Library Reading Areas” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mustafa Kamal Mohd. Shariff, PhD
Associate Professor
Faculty of Design and Architecture
Universiti Putra Malaysia
(Chairman)

Mohd. Yusoff Sulaiman, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Azni Zain Ahmed, PhD
Professor
Institute of Research, Development and Commercialisation (IRDC)
Universiti Teknologi MARA
(External Examiner)

Zuraini Denan, PhD
Associate Professor
Kulliyyah of Architecture and Environmental Design
International Islamic University of Malaysia
(External Examiner)

\[Signature\]

HASANAH MD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 JAN 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of M.S. The members of the Supervisory Committee are as follows:

Elias b. Salleh, Ph.D.
Faculty of Design and Architecture
Universiti Putra Malaysia
(Chairman)

Azizah Syed Salim, Ph.D.
Faculty of Design and Architecture
Universiti Putra Malaysia
(Member)

Sumarni Ismail
Faculty of Design and Architecture
Universiti Putra Malaysia
(Member)

Puteri Shireen Jahn Kassim, Ph.D.
Kulliyyah of Architecture and Environmental Design
International Islamic University of Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/ Dean
School of Graduate Studies
Univesiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NUR DALILAH DAHLAN
Date: 30 Dec 2005
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>APPROVAL</td>
<td>III</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XIII</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>XVII</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION/ NOTATIONS/ GLOSSARY OF TERMS</td>
<td>XVIII</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Definition of Daylighting 4
1.3 Why Use Daylighting 5
1.4 Research Questions 5
1.5 The Aim of The Research 5
1.6 The Objectives of the Research 6
1.7 Scope and limitation of the Research 6
1.8 The Research Framework 7
1.9 The Importance of the Research 9

2 LITERATURE REVIEW

2.1 Introduction 10
2.2 Library Design 10
2.2.1 Mount Angel Abbey Library 10
2.2.2 Phillips Exeter Academy Library 12
2.2.3 Pre & Post Reformation Libraries in University of Cambridge 13
2.3 Daylighting Analyses 14
2.3.1 Daylight Transmittance in Accordance to Windows Size 15
2.3.2 Daylighting Illumination Simulation & Measurement 15
2.3.3 Comparison between Top-lit & Side-lit Spaces 17
2.3.4 Comparison of Computer Simulation with Field Measurement in Daylighting Prediction 18
2.3.5 Daylighting and Room Lighting Ambiance 19
2.4 The Relationship between Daylighting and Human Performance 19
2.4.1 Users’ Preference Towards Daylighted Spaces in Libraries 19
2.4.2 Preferred Window Design 21
2.5 Summary 23

3 DAYLIGHTING FUNDAMENTALS

3.1 Introduction 27
3.2 Source of Daylighting 27
3.3 Sky Illuminance Distribution
3.3.1 Clear Sky Condition
3.3.2 Overcast Sky Condition
3.3.3 Cloud Cover Method
3.3.4 Luminous Efficacy of Daylight Estimation

3.4 Visual Perception and Comfort
3.4.1 Disability and Discomfort Glare

3.5 Measuring Daylight
3.5.1 Daylight Factor
3.5.1.1 BRS Simplified Daylight Tables
3.5.1.2 BRS Daylight Factor Protractor
3.5.1.3 Computer Simulation
3.5.2 Absolute Illumination Level

3.6 Lighting Standard
3.6.1 Illuminance Categories

3.7 Designing with Daylighting
3.7.1 Building Orientation
3.7.2 Room Reflectance
3.7.3 Daylight Transmission
3.7.4 Openings

3.8 Summary

4 METHODOLOGY
4.1 Introduction
4.2 Overview of Research Methodology
4.3 Choice of Building Typology
4.4 Selection of Case Studies
4.4.1 Perpustakaan Sultan Abdul Samad, Serdang (L.1)
4.4.2 Perpustakaan Tun Abdul Razak, Shah Alam (L.2)
4.4.3 Main Library of International Islamic University of Malaysia (L.3)
4.5 Geometrical Properties
4.6 Summary of the Case Study Libraries

5 FIELD MEASUREMENT PROGRAMME
5.1 Introduction
5.2 The Objectives of Field Measurement
5.3 Assumptions of Field Measurement
5.4 Instrumentation
5.4.1 Konica Minolta Illuminance Meter T-10
5.4.2 Environmental Monitoring Method – Photography
5.5 Trial Measurement & Data Preparation
5.5.1 Trial Measurement
5.5.1.1 Determining Time Periods
5.5.1.2 Determining 'P' Locations
5.5.2 Measurement Factors
5.5.3 Measurement Procedures
5.5.3.1 Determination of Daylight Factor
5.5.3.2 Measurement Procedure for Illumination Levels

VII
5.6 Results
5.6.1 Results from TDB, L.1
5.6.2 Results from TDB, L.2
5.6.3 Results from TDB, L.3
5.7 Physical Interpretation of Correlations
5.8 Conclusion

6 COMPUTER SIMULATION PROGRAMME
6.1 Introduction
6.2 Aim and Objectives of Computer Simulation
6.3 Choice of Computer Programme
6.3.1 Computer Programme Available
6.3.2 Rationale of Choice: RADIANCE
6.4 Limitations of the Computer Simulation
6.5 Modelling Approach
6.5.1 Justification
6.5.2 Parametric Analysis
6.5.3 Simulation Procedure
6.6 Results – Current WWR Condition
6.6.1 Simulation using TDB Model with Bay Window Design
6.6.2 Simulation using TDB Model with Flush Window Design
6.7 Conclusion

7 USER SURVEY PROGRAMME
7.1 Introduction
7.2 Aim and Objectives
7.3 Assumption of Survey
7.4 Limitation of the Survey
7.4.1 Illuminance Reference According to Age
7.4.2 Illuminance Reference According to Task
7.4.3 Illuminance Reference According to Time Spent for a Task
7.4.4 The Target Respondents
7.5 Instrumentation
7.5.1 Questionnaire Component
7.5.2 Justification
7.6 Results and Discussions
7.6.1 Users’ Perception
7.6.2 Users’ Preference
7.6.3 Suggestions during Occupancy
7.7 Findings
7.7.1 Survey at TDB in L.1
7.7.2 Survey at TDB in L.2
7.7.3 Survey at TDB in L.3
7.7.4 Users’ Preferred Illumination Level
7.8 Conclusion

8 CONCLUSIONS AND RECOMMENDATIONS
LIST OF TABLES

Table	Page
3.1 | Relationship between types of skies and the Cloud Cover \ Justification | 34
3.2 | Average Cloud Cover for Subang from 2001 to 2003 | 34
3.3 | Summary of luminous efficacy values | 35
3.4 | Illuminance values at Subang in January 1998 | 38
3.5 | Illuminance categories according to type of space and activity | 45
3.6 | Illuminance categories according to range of illuminance and type of activity | 47
4.1 | Surface, material and reflectance at TDB, L.1 | 66
4.2 | Surface, material and reflectance at TDB, L.2 | 73
4.3 | Surface, material and reflectance at TDB, L.3 | 79
4.4 | Geometrical properties of L.1, L.2 & L.3 | 81
4.5 | Summary for the inventory of TDB at L.1, L.2 and L.3 | 85
5.1 | DF calculation for TDB at L.1 | 98
5.2 | Spot Readings of DL Illumination Levels at TDB, L.1 | 99
5.3 | Spot Readings of IL Illumination Levels at TDB, L.1 | 100
5.4 | Artificial Lighting Illumination Levels deducted from Table 5.2 and Table 5.3 | 100
5.5 | Average readings over 3 periods at TDB in L.1 | 101
5.6 | DF calculation for TDB at L.2 | 102
5.7 | Spot Readings of DL Illumination Levels at TDB, L.2 | 104
5.8 | Spot Readings of IL Illumination Levels at TDB, L.2 | 105
5.9 | Artificial Lighting Illumination Levels deducted from Table 5.7 and Table 5.8 | 105
5.10 | Average readings over 3 periods at TDB in L.2 | 106
5.11 | DF calculation for TDB at L.3 | 107
5.12 | Spot Readings of DL Illumination Levels at TDB, L.3 | 109
5.13 | Spot Readings of IL Illumination Levels at TDB, L.3 | 110
5.14 | Artificial Lighting Illumination Level deducted from Table 5.12 and Table 5.13 | 110
5.15 | Average readings over 3 periods at TDB in L.3 | 111
5.16 | DF for TDB at L.1, L.2 and L.3 | 112

X
5.17 Correlation coefficient for DF reduction curve Eq (1) 114
5.18 Illumination level for TDB at L.1, L.2 and L.3 116
5.19 Correlation coefficient for DL illumination reduction curve Eq. (2) 118
5.20 AL Illumination supplement for TDB at L.1, L.2 and L.3 119
5.21 Percentage difference between illumination supplement used at three case study libraries 120
6.1 DF value according to Current Window Properties 133
6.2 DF value according to Current and Various Bay Window Properties 134
6.3 DF value according to Current and Various Flush Window Properties 140

LIST OF TABLES IN APPENDIX

A.1 Recommended Lighting 183
A.2 Recommended Illuminance according to Type of Activities 183
A.3 Task Illuminances Categories (Part 1) 184
A.4 Task Illuminances Categories (Part 2) 185
A.5 Illuminance Categories and Illuminance Values for Generic Types of Activities in Interiors 186
A.6 Internal Reflected Component of Daylight Factor 186
A.7 Recommended Reflectance Range according to Colours in interior for Workplace 187
A.8 Solar Optical Properties Light Ratios of Different Types of Clear Glasses 188
B Cloud cover Data 189
C.1 Illumination Level at TDB, L.1 depending on Daylighting 190
C.2 Illumination Level at TDB, L.2 depending on Daylighting 193
C.3 Illumination Level at TDB, L.3 depending on Daylighting 196
C.4 Illumination Level at TDB, L.1 under Integrated Lighting 199
C.5 Illumination Level at TDB, L.2 under Integrated Lighting 202
C.6 Illumination Level at TDB, L.3 under Integrated Lighting 205
E.1 Comparison of Results for Section B 241

XI
E.2	Comparison of Results for Section C	243
E.3	Comparison of Results for Section D	244
E.4	Comparison of Results in Section B at TDB, L.2	246
E.5	Comparison of Results in Section C at TDB, L.2.	248
E.6	Comparison of Results in Section D at TDB, L.2.	250
E.7	Comparison of Results in Section B, at TDB, L.3	252
E.8	Comparison of Results in Section C at TDB, L.3.	254
E.9	Comparison of Results in Section D	256
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Research Framework</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Simulations using SUPERLITE and ADELINE 2.0</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Series of respondents’ locations and the DF of selected case study areas</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Aging versus visual performance</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>The position of light within the electromagnetic spectrum</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>The relationship between global, direct-beam and diffused illuminance</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>The amount of illuminance for an overcast sky</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Probability amount of illuminance from global and diffused sky component</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>Solar Altitude Angle (SAA)</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Clear sky vault</td>
<td>33</td>
</tr>
<tr>
<td>3.7</td>
<td>Clear sky condition</td>
<td>33</td>
</tr>
<tr>
<td>3.8</td>
<td>Overcast sky vault</td>
<td>33</td>
</tr>
<tr>
<td>3.9</td>
<td>Overcast sky condition</td>
<td>33</td>
</tr>
<tr>
<td>3.10</td>
<td>MYC against Measured illuminance value in January 2002</td>
<td>37</td>
</tr>
<tr>
<td>3.11</td>
<td>Sky Component</td>
<td>41</td>
</tr>
<tr>
<td>3.12</td>
<td>External Reflected Component</td>
<td>41</td>
</tr>
<tr>
<td>3.13</td>
<td>Internal Reflected Component</td>
<td>41</td>
</tr>
<tr>
<td>3.14</td>
<td>Daylight Factor</td>
<td>41</td>
</tr>
<tr>
<td>3.15</td>
<td>BRS Daylight Factor Protractor</td>
<td>43</td>
</tr>
<tr>
<td>3.16</td>
<td>Applying the BRS Daylight Protractor on Section and Floor Plan</td>
<td>43</td>
</tr>
<tr>
<td>3.17</td>
<td>Kuala Lumpur Sun’s Path</td>
<td>49</td>
</tr>
<tr>
<td>3.18</td>
<td>Surfaces Reflectance Opposite a window wall</td>
<td>51</td>
</tr>
<tr>
<td>3.19</td>
<td>Recommended range of surface reflectance and illuminance ratio relatives to task illuminance</td>
<td>51</td>
</tr>
<tr>
<td>3.20</td>
<td>Direct and diffused solar radiation transmittance through glass</td>
<td>52</td>
</tr>
<tr>
<td>3.21</td>
<td>Characteristic of sidelighting, toplight and atria</td>
<td>53</td>
</tr>
</tbody>
</table>
3.22 Illumination gradient showing at section view based on three opening levels.

3.23 Multilateral opening through plan and section view

4.1 The Research Methodology Framework

4.2 Location of PSAS (L.1) in UPM, Serdang Campus.

4.3 1st Floor Plan of both the blocks of L.1

4.4 Section showing location of TDB in L.1

4.5 Layout plan for TDB in L.1 (scale 1:125)

4.6 TDB in L.1 (Section A-A) (scale 1:125)

4.7 Dimension of windows at TDB, L.1

4.8 Lighting layouts at TDB, L.1

4.9 Location of PTAR 1 (L.2) in UiTM, Shah Alam

4.10 1st Floor Plan L.2

4.11 Section showing location of TDB in L.2

4.12 Layout plan of TDB in L.2 (scale 1:125)

4.13 TDB in L.2 (Section A-A)

4.14 Dimension of windows at TDB, L.2

4.15 Lighting layouts at TDB, L.2

4.16 Location of MLIIUM (L.3) in IIUM, Gombak

4.17 2nd Floor Plan L.3

4.18 Section showing location of TDB in L.3

4.19 Layout plan of TDB in L.3 (scale 1:125)

4.20 TDB in L.3 (Section A-A)

4.21 Dimension of windows at TDB, L.2

4.22 Lighting layout at TDB, L.3

5.1 Konica-Minolta Illuminance Meter T-10 and T-10M

5.2 DF contour at TDB in L.1

5.3 Field Measurement of DL Illumination level for TDB at L.1

5.4 Average DL and IL readings at TDB in L.1

5.5 DF contour at TDB in L.2

5.6 Field Measurement of DL Illumination level for TDB at L.2

5.7 Average DL and IL readings at TDB in L.2

5.8 DF contour at TDB in L.3

5.9 Field Measurement of DL Illumination level for TDB at L.3

XIV
5.10 Average DL and IL readings at TDB in L.3
5.11 DF reduction correlation for SLWOS at TDB in L.1
5.12 DF reduction correlation for SLWOS at TDB in L.2
5.13 DF reduction correlation for SLWOS at TDB in L.3
5.14 Relationship between DF and P locations for SLWOS at TDB L.1, L.2 & L.3
5.15 DL illumination reduction correlation for SLWOS at TDB in L.1
5.16 DL illumination reduction correlation for SLWOS at TDB in L.2
5.17 DL illumination reduction correlation for SLWOS at TDB in L.3
5.18 Percentage of Supplementary Illumination used at TDB in L.1, L.2 and L.3
6.1 Locating Eye and Focus View Position in RadianceIES
6.2 Generating illumination threshold >300 lux image using RadianceIES
6.3 DF value according to Current Condition of SLWOS for three TDBs
6.4 DF value according to Current Bay Window Properties
6.5 Isolux contour at illumination level threshold > 300 lux with a 3m room height and according to various WWR settings for bay window design
6.6 Isolux contour at illumination level threshold > 500 lux with a 3m room height and according to various WWR settings for bay window design
6.7 Isolux contour at illumination level threshold > 300 lux with a 4m room height and according to various WWR settings for bay window design
6.8 Isolux contour at illumination level threshold > 500 lux with a 4m room height and according to various WWR settings for bay window design.
6.9 DF value according to Current Flush Window Properties
6.10 Isolux contour at illumination level threshold > 300 lux with a 3m room height and according to various WWR settings for flush window design
6.11 Isolux contour at illumination level threshold > 500 lux with a 3m room height and according to various WWR settings for flush window design
6.12 Isolux contour at illumination level threshold > 300 lux with a 4m room height and according to various WWR settings for flush window design.
6.13 Isolux contour at illumination level threshold > 500 lux with a 4m room height and according to various WWR settings for flush window design.
7.1 Distribution of Responses for Users’ Perception

XV
7.2 Distribution of Responses for Users' Preference 160
7.3 Comparison of Daylighting Condition in Libraries 162
7.4 Comparison of DL and IL condition at TDB, L.1 and incompliance to users' preference 167
7.5 Comparison of DL and IL condition at TDB, L.2 and incompliance to users' preference 168
7.6 Comparison of DL and IL condition at TDB, L.3 and incompliance to users' preference 168

LIST OF FIGURES IN APPENDIX

E.1 Survey Results of Section B 241
E.2 Result of Users' Preference towards Daylighting Condition 243
E.3 Survey Results of Section B for TDB at L.2 246
E.4 Survey Results of Section C for TDB at L.2 248
E.5 Survey Results of Section B for TDB at L.3 252
E.6 Survey Results of Section C for TDB at L.3 254

XVI
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>14</td>
</tr>
<tr>
<td>4.1</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>73</td>
</tr>
<tr>
<td>4.7</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>74</td>
</tr>
<tr>
<td>4.9</td>
<td>74</td>
</tr>
<tr>
<td>4.10</td>
<td>79</td>
</tr>
<tr>
<td>4.11</td>
<td>79</td>
</tr>
<tr>
<td>4.12</td>
<td>80</td>
</tr>
<tr>
<td>4.13</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>91</td>
</tr>
</tbody>
</table>

XVII