UNIVERSITI PUTRA MALAYSIA

REPRODUCTIVE BIOLOGY OF HORSESHOE CRAB
(CARCINOSCORPLUS ROTUNDICAUDE) WITH EMPHASIS ON
GONAD AND GAMETE MORPHOLOGY

PARVANEH HAJEB.

FP 2005 10
REPRODUCTIVE BIOLOGY OF HORSESHOE CRAB (*Carcinoscorpius rotundicauda*) WITH EMPHASIS ON GONAD AND GAMETE MORPHOLOGY

By

PARVANEH HAJEB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2005
Dedicated

To my dearly beloved family for all their love, supports, understanding and patient.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

Reproductive Biology of Horseshoe Crab (CARINOSCORPIUS ROTUNDICAUDA) With Emphasis on Gonad and Gamete Morphology

By

PARVANEH HAJEB

October 2005

Chairman : Annie Christianus, PhD
Faculty : Agriculture

Samples of adult Carinoscorpius rotundicauda caught from Pulau Lumut, Selangor, from November 2003 to February 2005 were conditioned in the Hatchery Unit, Universiti Putra Malaysia and used for all the experiments.

C. rotundicauda was identified based on its morphological characteristics and at the same time age determination was carried out. It is the smallest of four extant species of horseshoe crabs. Male adults were smaller than females. Based on the size estimation, it was found that 75% of collected C. rotundicauda males were of 10 to 11 years old (after 14th molt), while 59% of the females were 11 to 12 years old (after 15th molt).

The male reproductive organ was investigated morphologically and histologically. It consisted of testis and spermiducts network which was filled with spermatogenic cells (spermatogonia, primary and secondary spermatocytes) that lied along the basement membrane with spermatozoa close to the testicular lumen. SEM observations showed that a mature
spermatozoa consisted of a head with a cap-like acrosomal vesicle, midpiece and a long flagellum. The average size of the sperm head was 4.6 \, \mu m while the flagellum was 33 \, \mu m in length. The acrosomal filament formed 11 helical coils around the nucleus. Observation on the cross-section of the flagellum showed a 9+0 axoneme pattern without the central tubules.

Morphology and histology of mature ovary and egg were studied. The female gonad was located in the prosomal part, consisted of ovarian tubes and oviducts which opened as a pair of gonopores on the ventral side of the opisthosoma. A *C. rotundicauda* egg (of 2.25 to 2.58 mm in diameter) had a large yolk covered with an elastic chorion with two layers, the outer basement lamina (3.03 \, \mu m thickness) and the inner vitelline envelope (43.6 \, \mu m thickness). Fecundity of *C. rotundicauda* ranged from 993 to 7937 eggs per adult, increasing with body size and weight.

Interactions between egg and sperm were observed under SEM. Spermatozoa were attached to the outer layer of the egg's chorion. In this study, high sperm concentration (23 - 30 \times 10^6 \, \text{sperm/ml}) resulted in numerous sperms attached to the egg surface. Even though many sperms can attach to the egg surface and pass through the egg's envelope, only one will transfer its nucleus into the vitellus and fertilize the egg.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

Biologi Pembiakan Belangkas (CARCINOSCORPIUS ROTUNDICAUDA) dengan Penumpuan ke atas Morfologi Gonad dan Gamet

Oleh

PARVANEH HAJEB

Oktober 2005

Pengerusi : Annie Christianus, PhD
Fakulti : Pertanian

Sampel Carcinoscorpius rotundicauda dewasa didapati dari Pulau Lumut, Selangor, dari November 2003 hingga Februari 2005 disesuaikan di Unit Penetasan, Universiti Putra Malaysia dan digunakan untuk semua eksperimen.

C. rotundicauda dikenalpasti berdasarkan ciri-ciri morfologinya dan pada masa yang sama penentuan umur turut dijalankan. Ia adalah spesies yang terkecil di antara empat spesies yang masih hidup. Belangkas jantan dewasa adalah kecil berbanding dengan betina. Berdasarkan anggaran saiz, didapati bahawa 75% belangkas jantan yang dikutip adalah berada pada lingkungan umur 10 hingga 11 tahun (selepas 14 kali bersalin kulit), manakala 59% dari betina berumur 11 hingga 12 tahun (selepas 15 kali bersalin kulit).

Organ pembiakan belangkas jantan telah dikaji dari segi morfologi dan histologi. Ia terdiri dari testis dan jaringan duktus sperma yang dipenuhi oleh sel-sel spermatogenik (spermatogonia, spermatosit primer dan sekunder)
yang terletak di sepanjang membran dasar dengan spermatozoa terdapat hampir ke lumen testikular. Pemerhatian SEM menunjukkan bahawa spermatozoa matang mempunyai satu kepala dengan vesikel akrosom menyerupai topi, bahagian tengah dan satu flagellum yang panjang. Saiz purata kepala sperma adalah 4.6 µm manakala flagellum 33 µm panjang. Filamen akrosom membentuk 11 lingkaran helik mengelilingi nukleus. Pemerhatian ke atas keratan rentas flagellum menunjukkan corak aksonema 9+0 tanpa tubul tengah.

Morfologi dan histologi ovari dan telur matang telah dikaji. Gonad betina terletak di bahagian prosoma, terdiri dari tiub ovari, duktus ovari yang terbuka sebagai sepasang gonopor pada ventral opistosoma. Telur *C. rotundicauda* (berdiameter 2.25 hingga 2.58 mm) mempunyai satu yolka yang besar diselaputi korion yang elastik dan ianya mempunyai dua lapisan iaitu lamina dasar pada bahagian luar (3.03 µm tebal) dan selaput vitelin (43.6 µm tebal) pada bahagian dalam. Fekunditi *C. rotundicauda* adalah pada julat 993 hingga 7937 telur untuk seekor dewasa yang meningkat dengan peningkatan saiz dan berat badan.

Interaksi di antara telur dan sperma diperhatikan melalui SEM. Spermatozoa melekat di permukaan luar korion telur. Dalam kajian ini, kepekatan sperma yang tinggi (23 – 30 x 10^6 sperm/ml) menyebabkan banyak sperma melekat pada permukaan telur. Walaupun banyak sperma boleh melekat pada permukaan telur dan menembusi selaput telur, hanya satu sahaja yang akan memindahkan nukleusnya ke dalam vitellus dan mensenyawakan telur.
AKNOWLEDGEMENTS

My full praise to our God for enabling me to complete my study.

My sincere appreciation to my supervisor and chair person of the supervisory committee, Dr. Annie Christianus, who was a great source of inspiration and encouragement throughout the period of my study. Thank you for her scientific guidance and advice during my study. I am also deeply indebted to her for arranging of the necessary funding and for the friendly environment during my study.

I would like to express my deep thanks to my supervisory committee members, Associate Professor Dr. Che Roos Saad and Associate Professor Dr. Aziz Arshad, for their valuable contribution and suggestions.

Thanks to the government of Malaysia for funding this project through the Intensified Research on Priority Areas (IRPA) grant no 01-02-04-0864 EA001.

My thankfulness also goes to Dr. Mary Kimble from Department of Biology, University of South Florida and Dr. Helen M. C. Chiu from Hong Kong University for their helpful guidance.

Special gratitude to Associate Professor Dr. Mohd Salleh Kamarudin who provided me with an opportunity to use his well-equipped laboratory, Professor Dato’ Dr. Sharif Mohamad Din and Associate Professor Dr. Hassan Mohd Daud for their histological facilities (Faculty of Veterinary
Medicine) and Dr. Fuziah and her staff, Ms, Azilah, Faridah and Mr. Ho in Electron Microscopy unit, Mr. Jasni in Hatchery unit for his help during the field experiments, Prof. Madya Dr. Anuar Abd. Rahim, Dr. Osumaa Haruna Ahmed and Dr. Mohamadu Boyle Jalloh (Department of Soil Science) for their valuable guidance in my statistical analysis.

I am also very much indebted to my dear friend Mr. Shahram for his encouragement and assistance during my study and field experiments.

My gratefulness to all my friends especially Dr. Mehdi, Dr. Samad, Dr. Ladan, Ms Elham and Mr. Hamidreza for their support and being my friend.

My deepest appreciation and gratitude to my dear family members for their spiritual, financial and moral support. All of you are respected and loved for being there for me.
I certify that an Examination Committee met on 18th October 2005 to conduct the final examination of Parvaneh Hajeb on her Master of Science thesis entitled “Reproductive Biology of Horseshoe Crab (Carcinoscorpius rotundicauda) with Emphasis on Gonad and Gamete Morphology” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd. Salleh Kamarudin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Siti Khalijah Daud, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mustafa Kamal Abdul Satar, PhD
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Chong Ving Ching, PhD
Professor
Institute of Biological Science
Universiti Malaya
(External Examiner)

ZAKARIAH ABD RASHID, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 DEC 2005
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

**Annie Christianus, PhD**  
Lecturer  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Chairman)

**Che Roos Saad, PhD**  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

**Aziz Arshad, PhD**  
Associate Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Member)

\[signature\]

**AINI IDERIS, PhD**  
Professor / Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date: 12 JAN 2006
DECLARATION

I hereby declare that this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

PARVANEH HAJEB

Date: 7/12/05
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vii
APPROVAL x
DECLARATION xi
LIST OF TABLES xv
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xix

CHAPTER

1 INTRODUCTION
1.1 Background of study 1
1.2 The importance of the study 2
1.3 Objectives 3

2 LITERATURE REVIEW
2.1 Taxonomy 5
2.2 Geographical distribution 7
2.3 Morphology of horseshoe crab 7
2.3.1 Eyes 8
2.3.2 Carapace 9
2.3.3 Gills 10
2.3.4 Legs 10
2.3.5 Circulatory system 11
2.3.6 Nervous system 11
2.3.7 Digestive system 14
2.3.8 Sex differentiation 15
2.4 Molting 16
2.5 Life cycle 17
2.5.1 Egg stage 17
2.5.2 Larval stage 18
2.5.3 Juvenile stage 19
2.5.4 Adult stage 19
2.6 Breeding 20
2.7 Feeding 21
2.8 Physical tolerances 22
2.8.1 Temperature 22
2.8.2 Salinity 23
2.9 Activity time 23
2.10 Relationship between the horseshoe crab and other species 24
3 GENERAL METHODOLOGY
3.1 Samples collection and maintenance 26
3.2 Species identification 27
3.3 Sex differentiation 27
3.4 External morphology of adult horseshoe crabs 27
3.5 Preparation of histological samples of gonads 29
    3.5.1 Light microscopy 29
    3.5.2 Scanning Electron Microscopy (SEM) 31
    3.5.3 Transmission Electron Microscopy (TEM) 32
3.6 Collection of gametes and artificial fertilization of eggs 34
3.7 Statistical analysis 35

4 EXTERNAL MORPHOLOGY OF ADULT
   Carcinoscorpius rotundicauda
4.1 Introduction 36
4.2 Materials and methods 37
    4.2.1 Species identification 37
    4.2.2 Age estimation and sex dimorphism 37
4.3 Results 39
    4.3.1 Morphological description 39
    4.3.2 Sex dimorphism 52
    4.3.3 Age estimation 56
4.4 Discussion 57

5 MORPHOLOGY AND HISTOLOGY OF TESTIS AND SPERM
   OF Carcinoscorpius rotundicauda
5.1 Introduction 60
5.2 Materials and methods 61
    5.2.1 Morphology of the testis 62
    5.2.2 Light microscopy 62
    5.2.3 Scanning electron microscopy (SEM) 62
    5.2.4 Transmission electron microscopy (TEM) 62
5.3 Results 63
    5.3.1 Morphology and histology of the matured testis 63
    5.3.2 Morphology of the sperm 72
5.4 Discussion 76

6 MORPHOLOGY AND HISTOLOGY OF THE OVARY AND EGG
   OF Carcinoscorpius rotundicauda
6.1 Introduction 78
6.2 Materials and methods 79
    6.2.1 Morphology of the ovary 79
    6.2.2 Histology of mature egg 80
    6.2.3 Statistical analysis 80
6.3 Results 81
    6.3.1 Morphology of the C. rotundicauda ovary 81
    6.3.2 Morphology and histology of mature egg 86
    6.3.3 Fecundity 89
7 OBSERVATION ON THE SPERM ATTACHMENT TO THE 
*Carcinoscorpius rotundicauda* EGG UNDER ELECTRON 
MICROSCOPE

7.1 Introduction 94
7.2 Materials and methods 95
    7.2.1 Collection of gametes and artificial fertilization of eggs 95
    7.2.2 Processing for SEM viewing 96
7.3 Results 96
7.4 Discussion 102

8 GENERAL DISCUSSION 104
9 CONCLUSION 110

REFERENCES 111
BIODATA OF THE AUTHOR 116
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Distinctive characteristics showing sexual dimorphism of <em>C. rotundicauda</em></td>
<td>53</td>
</tr>
<tr>
<td>4.2 Comparison of morphometric parameters of matured male and female <em>C. rotundicauda</em></td>
<td>55</td>
</tr>
<tr>
<td>4.3 Instar stages and age assigned for <em>C. rotundicauda</em> based on the size–age-growth relationship described by Sekiguchi (1988)</td>
<td>57</td>
</tr>
</tbody>
</table>
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Measurements of various body parts of <em>C. rotundicauda</em></td>
<td>28</td>
</tr>
<tr>
<td>3.2 Flow chart of tissue preparation for SEM viewing</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Flow chart of tissue preparation for TEM viewing</td>
<td>34</td>
</tr>
<tr>
<td>4.1 The age and growth stages estimated for <em>C. rotundicauda</em> (as described by Sekiguchi (1988))</td>
<td>39</td>
</tr>
<tr>
<td>4.2 The external morphology of male and female <em>C. rotundicauda</em></td>
<td>40</td>
</tr>
<tr>
<td>4.3 Dorsal view</td>
<td>41</td>
</tr>
<tr>
<td>4.4 Frontal view: The anterior ventral arc is prominent in males than females</td>
<td>41</td>
</tr>
<tr>
<td>4.5 Attachment points (shown by arrows) of muscles to the inner surface of the carapace</td>
<td>42</td>
</tr>
<tr>
<td>4.6 Compound eyes (Ce) and Median eyes (Me)</td>
<td>43</td>
</tr>
<tr>
<td>4.7 Dorsal view of opisthosomatic carapace</td>
<td>44</td>
</tr>
<tr>
<td>4.8 Ventral view of <em>C. rotundicauda</em></td>
<td>46</td>
</tr>
<tr>
<td>4.9 Segments of the third walking leg of <em>C. rotundicauda</em></td>
<td>46</td>
</tr>
<tr>
<td>4.10 Segment of the fifth walking leg of <em>C. rotundicauda</em></td>
<td>47</td>
</tr>
<tr>
<td>4.11 The first and second walking legs of male and female adults <em>C. rotundicauda</em></td>
<td>48</td>
</tr>
<tr>
<td>4.12 The Chilaria of <em>C. rotundicauda</em></td>
<td>50</td>
</tr>
<tr>
<td>4.13 The book gill and the operculum of <em>C. rotundicauda</em></td>
<td>50</td>
</tr>
<tr>
<td>4.14 The Telson of <em>C. rotundicauda</em></td>
<td>51</td>
</tr>
<tr>
<td>4.15 Carapace length-weight relationship in <em>C. rotundicauda</em></td>
<td>53</td>
</tr>
</tbody>
</table>
5.1 The male reproductive organ located above the midgut gland in the prosoma

5.2 The testicular network of *C. rotundicauda* stained with Nile blue sulfate

5.3 Male genital papilla and main spermiducts of *C. rotundicauda*

5.4 Spermiduct branches in *C. rotundicauda*

5.5 Cross section of testicular network under light microscope (H & E)

5.6 Cross section of testicular tubes under light microscope (H & E)

5.7 Cross section of testicular tube showing different stages of spermatogenesis (H & E)

5.8 Higher magnification of cross section of testicular tube (H & E)

5.9 Sperm sac in adult *C. rotundicauda* (H & E)

5.10 Cross section of main spermiduct occupied by matured spermatozoa (H & E)

5.11 SEM observation on the testicular network of *C. rotundicauda*

5.12 High quantity of sperm in the spermiduct

5.13 SEM observation showing mature spermatozoa in the sperm sac

5.14 SEM observation on the matured spermatozoa

5.15 SEM observation on mature spermatozoa showing cape-like acrosomal vesicle on the head

5.16 Spermatozoa of *C. rotundicauda* observed under light microscopy

5.17 Cross section of head and midpiece of *C. rotundicauda* sperm under TEM

5.18 Cross section of head of *C. rotundicauda* sperm under TEM,
showing acrosomal filament passing through the central part of nucleus

5.19 Cross section of *C. rotundicauda* flagellum under TEM showing 9+0 axoneme pattern

6.1 Female gonopore in *C. rotundicauda*

6.2 Dorsal view of reproductive organ of matured female *C. rotundicauda*

6.3 Anterior branches of oviducts in *C. rotundicauda*

6.4 Main and lateral branches of oviducts in *C. rotundicauda*

6.5 Ovarian network with developing eggs in matured *C. rotundicauda*

6.6 Ventral view of female reproductive organ in *C. rotundicauda*

6.7 Mature *C. rotundicauda* egg under light microscope

6.8 Cross section of matured egg of *C. rotundicauda* under SEM

6.9 SEM observation of egg membrane

6.10 SEM observation on cross section of chorion

6.11 Relationship between fecundity and body weight

6.12 Relationship between fecundity and ovary weight

6.13 Relationship between fecundity and carapace length

6.14 Relationship between fecundity and prosoma width

7.1 The egg surface covered with numerous spermatozoa

7.2 Primary attachment of the spermatozoa onto the egg surface

7.3 Spermatozoa attached to the basement lamina of the egg

7.4 The flattened acrosome on the egg surface
7.5 The penetration of the spermatozoa through the egg envelope

7.6 Numerous sperms penetrated the egg’s chorion

7.7 Higher magnification of Figure 7.6 showing sperms penetrated the basement lamina
### LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Acrosome</td>
</tr>
<tr>
<td>Aa</td>
<td>Anal angle</td>
</tr>
<tr>
<td>Asp</td>
<td>Anterior spermiduct</td>
</tr>
<tr>
<td>Bm</td>
<td>Basement membrane</td>
</tr>
<tr>
<td>Bma</td>
<td>Branchio-thoracic muscle attachment</td>
</tr>
<tr>
<td>Ce</td>
<td>Compound eyes</td>
</tr>
<tr>
<td>Ch</td>
<td>Chelicerae</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CR</td>
<td>Cardiac region</td>
</tr>
<tr>
<td>EcR</td>
<td>Extracardiac region</td>
</tr>
<tr>
<td>Ema</td>
<td>Entro-branchial muscle attachment</td>
</tr>
<tr>
<td>Ew</td>
<td>Distance between the two compound eyes</td>
</tr>
<tr>
<td>F</td>
<td>Flagellum</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>Gn</td>
<td>Gonopores</td>
</tr>
<tr>
<td>GSI</td>
<td>Gonadosomatic index</td>
</tr>
<tr>
<td>H</td>
<td>Sperm head</td>
</tr>
<tr>
<td>H &amp; E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>In</td>
<td>Intestine</td>
</tr>
<tr>
<td>LF</td>
<td>Longitudinal furrow</td>
</tr>
<tr>
<td>LSp</td>
<td>Lateral spermiduct</td>
</tr>
<tr>
<td>M</td>
<td>Midpiece</td>
</tr>
<tr>
<td>Ma</td>
<td>Marginal area</td>
</tr>
<tr>
<td>Me</td>
<td>Median eyes</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MI</td>
<td>Median line</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>μm</td>
<td>micrometer</td>
</tr>
<tr>
<td>Mr</td>
<td>Median ridge</td>
</tr>
<tr>
<td>Ms</td>
<td>Marginal spine</td>
</tr>
<tr>
<td>MSp</td>
<td>Main spermiducts</td>
</tr>
<tr>
<td>n</td>
<td>Sperm nucleus</td>
</tr>
<tr>
<td>OI</td>
<td>Length of the opisthosoma</td>
</tr>
<tr>
<td>On</td>
<td>Opisthosomatic notch</td>
</tr>
<tr>
<td>Op</td>
<td>Opercular pleurites</td>
</tr>
<tr>
<td>Or</td>
<td>Ophthalmic ridge</td>
</tr>
<tr>
<td>Ow</td>
<td>Maximum width of the opisthosoma</td>
</tr>
<tr>
<td>PI</td>
<td>Length of the prosoma</td>
</tr>
<tr>
<td>Plr</td>
<td>Posterio-lateral ridge</td>
</tr>
<tr>
<td>Pr</td>
<td>Posterior ridge</td>
</tr>
<tr>
<td>Psp</td>
<td>Primary spermatocyte</td>
</tr>
<tr>
<td>Pw</td>
<td>Maximum width of the prosoma</td>
</tr>
<tr>
<td>S1-S6</td>
<td>Length of the first to sixth opisthosomal spine</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>Spg</td>
<td>Spermatogonia</td>
</tr>
<tr>
<td>Spz</td>
<td>Spermatozoa</td>
</tr>
<tr>
<td>SR</td>
<td>Subophthalmic region</td>
</tr>
<tr>
<td>Ssp</td>
<td>Secondary spermatocytes</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>TI</td>
<td>Length of the telson</td>
</tr>
<tr>
<td>Abbr</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Tn</td>
<td>Testicular network</td>
</tr>
<tr>
<td>Tt</td>
<td>Testicular tube</td>
</tr>
<tr>
<td>Tw</td>
<td>Width of the telson</td>
</tr>
<tr>
<td>Vms</td>
<td>Ventro-mesal spine</td>
</tr>
<tr>
<td>Vsa</td>
<td>Ventro-subfrontal</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

The horseshoe crab is one of the Earth's oldest creatures, appearing over hundred million of years before the dinosaurs. The horseshoe crab is not a crab. Instead it is closely related to spider and scorpions. According to the fossil records, the horseshoe crab’s appearance has remained unchanged for more than 300 million years. Therefore they are often called the “living fossils” (Iwanaga and Kawabata, 1998). Despite surviving for 300 million years and successfully passing through several mass extinctions, the horseshoe crab is not exempted from disappearing from this earth. The modern horseshoe crab has evolved little since their fossilized ancestor roamed the ocean floor (Fox, 2001).

There are only four living species of horseshoe crabs worldwide. In the Atlantic coast is Limulus polyphemus (Linnaeus, 1819). In Indo-Pacific waters is the Mangrove horseshoe crab, Carcinoscorpius rotundicauda (Laterille, 1802), the smallest among all the existing horseshoe crabs, and the Coastal horseshoe crab, Tachypleus gigas (Muller, 1758). In the waters of Japan, China and southern Sabah is the Chinese horseshoe crab Tachypleus tridentatus (Leach, 1819). These species can be differentiated by their size, colour and shape of tail. Two of these species (T. gigas and C. rotundicauda) can be found in Singapore (Sekiguchi, 1988). The Coastal horseshoe crab (Tachypleus gigas) is the largest
(diameter up to 25 cm). It is greyish in colour with a triangular and serrated telson. The Mangrove horseshoe crab (Carcinoscorpius rotundicauda) is the smallest (diameter up to 15 cm), brownish with a rounded telson (Sekiguchi, 1988). These species of horseshoe crabs belong to the subclass Xiphosura, are the only surviving members of the Merostomata. Comparison of this amazing animal with some fossil remains found in Silurian deposits shows that they have not changed much in nearly 400 million years (Kozloff, 1990). Today's horseshoe crabs closely resemble those known from Silurian period (Fox, 2001).

This invertebrate gets its name from the large, rounded, horseshoe-shaped carapace or shell, which covers its legs and softer body parts. The name “horseshoe crab” is partially an accurate correct description of the animal. Its upper body the prosomatic carapace has a horseshoe shape. It has book-shaped gills but different from the crabs with no jaws and antenna (Riska, 1981).

1.2 The importance of the study

The horseshoe crabs lived at the time of dinosaurs. Yet a sharp decline in its present population brings fear that it may share the same fate as other prehistoric species.

Horseshoe crabs species are important ecologically; fishermen use them as bait and a product derived from one species of the crab's blood are used by pharmaceutical companies to produce Limulus Amebocyte Lysate (LAL), a