

UNIVERSITI PUTRA MALAYSIA

EFFECT OF COFEE RESIDUE AND CROPPING SYSTEM ON CROP YIELD AND PHYSICOCHEMICAL PROPERTIES OF THE SOIL IN SOUTHERN ETHIOPIA

TENAW WORKAYEHU.

FP 2005 5

EFFECT OF COFFEE RESIDUE AND CROPPING SYSTEM ON CROP YIELD AND PHYSICOCHEMICAL PROPERTIES OF THE SOIL IN SOUTHERN ETHIOPIA

TENAW WORKAYEHU

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2006

EFFECT OF COFFEE RESIDUE AND CROPPING SYSTEM ON CROP YIELD AND PHYSICOCHEMICAL PROPERTIES OF THE SOIL IN SOUTHERN ETHIOPIA

By

TENAW WORKAYEHU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2006

Dedication

This manuscript is dedicated to my beloved parents Ato Workayehu Kassa and W/o Asmaretch Leyew and to the late parents in law Ato Demissie Adera and W/o Yitemwork Aytenfsu, and my brothers and sisters

It is also dedicated to my dearest wife in life Tenagne Demissie and the three children we are proud of Henoke Tenaw, Beniam Tenaw and Ermias Tenaw.

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECT OF COFFEE RESIDUE AND CROPPING SYSTEM ON CROP YIELD AND PHYSICOCHEMICAL PROPERTIES OF THE SOIL IN SOUTHERN ETHIOPIA

By

TENAW WORKAYEHU

January 2006

Chairman: Associate Professor Ahmad Husni Mohd. Hanif, PhD

Faculty : Agriculture

Dumping and burning of coffee residue brought a serious environmental problem. On the other hand, low soil fertility due to multiple cropping with low input coupled with moisture stress results in decline in production. This study was conducted to evaluate decomposition and mineralization of N from coffee residue, and its effect on soil physicochemical properties, crop yield, and apparent nutrient balance. Decomposition and release of N in soil was studied using five periods of incubation (0, 30, 60, 90, and 120 days) and four rates of residue (0, 3, 6, and 9 Mg ha⁻¹) in pot experiment. The same rates of residue and four rates of N fertilizer (0, 30, 60, and 90 kg ha⁻¹), urea as source, were studied under field condition.

In the pot experiment, coffee residue decomposed in two phases: viz. an initial faster phase, and a later slow rate of decay. Decomposition rate (KD) was controlled by lignin (L) and nitrogen (N) contents, and L/N ratio ($R^2 = 0.975^{**}$, n = 36). Immobilization of

soil N persisted for the entire 120 days, and release of N was controlled by lignin and cellulose contents, residue N and L/N ratio ($R^2 = 0.982^{**}$).

In the field, coffee residue alone significantly increased the mean uptake of N (106%), P (165%), and K (93%) in both maize and haricot bean, and its combination with N fertilizer enhanced the uptake by 143, 172 and 102%, respectively, compared to the control (without both residue and N fertilizer). Water use efficiency (WUE) increased significantly by 78% for maize and land equivalent ratio (LER) by 7% using coffee residue alone; and by 95% for total WUE and 16% for LER using residue along with N fertilizer. Efficiency of intercrop was 13% higher than sole cropping. Grain yield of maize with residue only varied between 52 and 88% of the sole maize yield (4,330 kg ha⁻¹).

In both pot and field experiments, soil amended with coffee residue showed increase in moisture content, total N (TN) and OC content. In the field study, the residue increased the physicochemical properties of the soil such as moisture (38%), TN (7.6%), and OC (8%) compared to the control. Intercropping increased soil moisture (3%), available P (8%) and K (15%) but reduced soil N (19%) and OC (4%) relative to the contents in sole maize.

Depletion of 20 and 70 kg N ha⁻¹ was obtained in soil treated with coffee residue and N fertilizer alone, respectively. On the other hand, a positive balance of 19.4 kg N ha⁻¹ was obtained from application of coffee residue followed by N fertilizer. The loss of K was high at 289 kg ha⁻¹ with coffee residue only and at 159 kg ha⁻¹ from coffee residue followed by N fertilizer. Application of 9 Mg ha⁻¹ coffee residue and 9 Mg ha⁻¹ coffee

residue with 90 kg N ha⁻¹ gave the highest maize grain yields (3,807 and 4,133 kg ha⁻¹, respectively) and monetary values of 1,834 and 2,367 birr ha⁻¹ (1USD= 8.40 Ethiopian birr), respectively, indicating the economic using coffee residues.

Amelioration of soil with coffee residue and/or N fertilizer provided improvement in soil physicochemical properties and crop yields. Therefore, utilization of coffee residue would not only provide an alternative source of plant nutrients but also alleviates soil fertility and reduce environmental pollution problems.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai mememuhi keperluan untuk ijazah Doktor Falsafah

KESAN SISA KOPI DAN SYSTEM PENANAMAN KEATAS HASIL TANAMAN DAN SIFAT-SIFAT FIZIK-KIMIA TANAH DI ETHIOPIA SELATAN

Oleh

TENAW WORKAYEHU

January 2006

Pengerusi: Professor Madya Ahmad Husni Mohd Hanif, Ph.D

Fakulti : Pertanian

Pembuangan dan pembakaran sisa kopi membawa masalah persekitaran yang teruk. Disebaliknya, kesuburan tanah yang rendah akibat daripada penanaman berulang dengan input rendah bersama dengan tegasan kelembapan mengakibatkan pengurangan hasil pengeluaran. Kajian ini dijalankan untuk menilai penguraian dan pemineralan N dalam sisa kopi dan kesannya ke atas sifat-sifat fizik-kimia tanah, hasil tanaman dan imbangan nutrient nyata.

Penguraian dan pembebasan N dalam tanah dikaji menggunakan lima tempoh pemeraman (0, 30, 60, 90 dan 120 hari) dan empat kadar sisa kopi (0, 3, 6, dan 9 Mg ha⁻¹) di dalam pasu. Kadar sisa yang sama dan empat kadar baja N (0, 30, 60, dan 90 kg ha⁻¹), dalam bentuk urea, dikaji di ladang. Kajian di dalam pasu menunjukkan sisa kopi mengurai dalam dua fasa, melalui fasa awalan yang cepat dan berakli dengan pengakhiran, pada kadar berkunagan dan perlahan. Kadar penguraian (KD) dikawal oleh kandungan lignin (L) dan nitrogen (N), dan nisbah L/N ($R^2 = 0.975^{**}$, n=36).

Immobilisasi N tanah berlaku selama tempoh 120 hari, dan pembebasan N dikawal oleh kandungan lignin ($R^2 = 0.982^{**}$) dan nisbah L/N.

Kajian di ladang menunjukan pemberian sisa kopi mengakibatkan peningkatan paras N (106%), P (165%), dan K (93%) untuk kedua-dua jagung dan kacang harikot, dan kombinasi dengan baja N menguatkan lagi pengambilan N masing-masing kepada 143, 172, dan 102% berbanding dengan kawalan (tanpa sisa kopi dan baja N). Kecekapan penggunaan air (WUE) meningkat dengan bererti sebanyak 78% untuk jagung dan nisbah setara tanah (LER) sebanyak 7% dengan menggunakan sisa kopi sahaja dan sebanyak 95% untuk jumlah WUE dan 16% LER dengan menggunakan sisa kopi bersama baja N. Kecekapan tanaman berselang (jagung dengan kacang harikot) adalah 13% lebih tinggi jika dibandingkan dengan tanaman tunggal. Hasil bijirin tanaman jagung dirawat dengan sisa kopi berada diantara 52 dan 88% daripada hasil tanaman jagung tunggal (4,330 kg ha⁻¹). Dalam kedua-dua kajian berpasu dan ladang, tanah yang ditambah dengan sisa kopi menunjukkan pertambahan kandungan kelembapan, jumlah N (TN) dan kandungan karban organik (OC).

Di ladang, penambahan sisa meningkatkan sifat kimia-fizik tanah, seperti kelembapan (38%), TN (7.6%) dan OC (8%) berbanding dengan kawalan. Tanaman berselang meningkatkan kelembapan tanah (3%), kedapatan P (8%) dan K (15%) tetapi menurunkan kandungan N tanah (19%) dan OC (4%) berbanding dengan kandungan yang ditanam jagung tunggal. Pengurangan sebanyak 20 dan 70 kg ha⁻¹ N didapati dari tanah masing-masing dirawat dengan sisa kopi dan baja N sahaja. Disebaliknya imbangan positif sebanyak 19.4 kg N ha⁻¹ diperolehi daripada penambahan sisa kopi

yang diikuti baja N. Kehilangan K yang tinggi sebanyak 289 kg ha⁻¹ dengan sisa kopi sahaja dan 159 kg ha⁻¹ dengan sisa kopi yang ditambah baja N. Penggunaan sisa kopi sebanyak 9 Mg ha⁻¹ sahaja dan 9 Mg ha⁻¹ sisa kopi yang diikuti dengan 90 kg N ha⁻¹ menghasilkan bijirin jagung masing-masing 3,807 dan 4,133 kg ha⁻¹ dan nilai kewangan 1,834 dan 2,367 birr ha⁻¹(1USD = 8.40 birr Ethiopia), menunjukkan kepentingan penggunaan sisa kopi dan baja N.

Penambahbaikan tanah dengan sisa kopi dan baja N meningkatkan sifat fizik-kimia tanah dan penghasilan tanaman. Oleh itu, penggunaan sisa kopi bukan sahaja membekalkan sumber nutrien tanaman alternatif tetapi juga sebagai pembaik kesuburan tanah dan mengurangkan masalah pesekitaran jika sisa ini dibuang.

ACKNOWLEDGEMENTS

I would like to express my most sincere appreciation to Associate Professor Dr. Ahmad Husni Mohd Hanif, chairman of my supervisory committee, for his continuous and valuable guidance and advice, encouragement, and constructive criticism throughout my study and in the preparation of this manuscript. Not only this he also devoted his money and time while I was sick and his advice to care myself when I went back to my country, Ethiopia.

My sincere appreciation is also extended to Associate Professor Dr. Anuar Abdul Rahim as member of my supervisory committee for his commitment, valuable advice and devotion of his time during the preparation of this manuscript. I also do give my sincere appreciation and respect to Professor Dr. Zaharah Abdul Rahman, member of the supervisory committee, who devoted her time and commitment in advising and forwarding valuable suggestion during the preparation of this manuscript.

I would also like to give my due respection to Dr. Paulos Dubale, director for soil and water research at Ethiopian Agricultural Research Organization (EARO), for his valuable advice, and continuous support during the execution of my experiments back home.

I also extended my thanks to Associate Professor Dr. Siti Zauyah Darus for her devotion to accomplish my request during my study and for the visit she made when I was back home while she was on trip to Ethiopia. Sincere appreciation also goes to Associate

Professor Dr. Mohd Hanafi Musa for his valuable suggestion and translating the abstract to Bahas Malayu.

My appreciation and thanks is also extended for the financial support afforded by the Government of Ethiopia, Ethiopian Agricultural Research Organization (EARO) and Agricultural Research and Training Project (ARTP) to pursue my tertiary education in Universiti Putra Malaysia.

My heartfelt thanks are extended to Dr. Osman, Dr. Prama, Dr. Jalloh, and Dr. Adrinal for their continuous support in particular Dr. Osman, Dr. Prama and Dr. Jalloh for their advice, support, and encouragement. I would like also to extend my appreciation to Dr. Kemal Ali for his financial support during the execution of my experiment back home, and Dr. Mohammed Daud for his advice and suggestion.

My appreciation is also extended to W/o Alemtsehay and other staffs of the National Soil Laboratory Research who helped me in laboratory work. My thanks are also forwarded to those who helped me during my field work at Awassa Research Center and the support they gave me.

Above all I would like my heartfelt admiration to my beloved wife W/o Tenagne Demissie for her understanding, continued support and encouragement, and sacrifices during the period of my study in Malaysia and to our sons Henoke Tenaw, Beniam Tenaw and Ermias Tenaw for their encouragement, support, pray and follow up through email wishing me all the success during my stay in Malaysia. I also wish them all the

success in their study now and in the future. My thanks and appreciation also goes to my father Ato Workayehu Kassa, mother W/o Asmaretch Leyew, the late parent in law Ato Demissie Adera and W/o Yitemwork Aytenfsu, my brothers Wondimeneh, Tsegaye, Temsegen, Hailemariam, and my sisters Tiruaynet and Askaletch.

I also wish to extend my thanks to Ato Dejene Demissie who dedicated his time and energy in following up and taking care of my family. I wish them all the best through their life and I pray to my God and Saint Mary for their stay in this world. Of all I thank my almighty God who has taken me, my parents and all my relatives to this date and gave us love, safety and peace.

TABLE OF CONTENTS

DEDICATION ABSTRACT ABSTRAK ACKNOLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS	
CHAPTER	
1 INTRODUCTION	1
2 LITERATURE REVIEW	6
Agronomic and Economic Value of Crop Residue	6
Effect of Crop Residue on Soil Physical Properties	7
Soil Bulk Density	7
Soil Temperature	9
Soil Moisture	9
Effect of Crop Residue on Soil Chemical Properties	11
Soil Acidity	11
Nutrient Availability	15
Nutrient Uptake	17
Effect of Crop Residue on Crop Yield	18
Effect of Crop Residue on Microbial Biomass	20
Effect of Inorganic Fertilizer	22
Microbial Growth and Development	22
Soil Physical Property	23
Soil pH, Nutrient Availability and Uptake	24
Crop Growth and Yield	26
Effect of Cropping System	28
Soil Properties	28
Water Use	29
Crop Nutrient Uptake	30
Crop Growth	32
Crop Yield	33
Factors Affecting Decomposition and Mineralization of Plant Residues	34
Effect of Quality	36
Effect of Initial Plant Nutrient Concentration	38
Effect of Carbon/Nitrogen Ratio	40
Effect of Types and Parts of Plant Residue	44
Plant Cover	47

Plant Residue Management Factors	49
Soil Properties	54
Role of Macro-and Micro-organisms	59
3 DECOMPOSITION AND NUTRIENT RELEASE BY COFFEE RESIDUE	63
Introduction	63
Materials and Methods	65
Characterization of Coffee Residue	65
Experimental Site	65
Experimental Procedures	66
Soil and Residue Sampling	66
Chemical Analysis of Coffee Residue and Soils	66
Treatments	67
Mathematical Calculations	68
Statistical Analysis	68
Results	70
Decomposition and Nutrient Release	70
Chemical Composition	70
Lignin Content	71
Cellulose Content	72
Hemicellulose Content	73
Dry matter Remaining and Weight Loss	74
Decomposition Rate (KD) of Coffee Residue	76
Mineralization Pattern of Nitrogen	78
Decomposition Effect on Soil Physical Properties	80
Decomposition Effect on Soil Chemical Properties	82
Soil pH	82
Total Soil Nitrogen	84
Organic Matter	85
Available Potassium and Phosphorus	86
Cation Exchange Capacity and Exchangeable Cations	87
Discussion	90
Conclusion	112
4 EFFECT OF COFFEE RESIDUE AND N FERTILIZER ON CROP YIELD	114
AND CHEMICAL PROPERTIES OF THE SOIL IN MAIZE/HARICOT	
BEAN INTERCROPPING	114
Introduction	114
Materials and Methods	116
Experimental procedures	116
Treatments	116
Soil and Plant Sampling	117
Soil and Crop Data	118
Computation of Other Data	118
Statistical Analysis	120

Results	121
Effects of Coffee Residue and N Fertilizer on Crops	121
Crop Growth and Yield	122
Land Equivalent Ratio (LER)	128
Crop Competitive Ratio (CR)	129
Crop Water Use Efficiency (WUE)	130
Maize Nutrient Uptake	133
Haricot bean Nutrient Uptake	138
Total Aboveground Uptake (Both Crops)	143
Nutrient Harvest Index (NuHI)	145
Coffee Residue and N Fertilizer on Soil Physical and Chemical	148
Properties	
Decomposition and Release of Nitrogen	148
Soil Physical Property	149
Soil Chemical Properties	150
Changes of Some Physical and Chemical Properties of Soil in	155
Cropping System	
Soil Physical Property	155
Soil Chemical Properties	156
Apparent Nutrient Balance	157
Multiple Regression on Content and Uptake of N, P and K, and	160
Grain Yield	
Economic Benefit	162
Discussion	163
Conclusion	199
5 GENERAL SUMMARY AND CONCLUSION	202
REFERNCES	215
APPENDICES	242
BIODATA OF THE AUTHOR	249

LIST OF TABLES

Table		Page
3.1	Chemical composition of coffee residue	70
3.2	Effect of rates of coffee residue on cellular concentrations for the incubation period of 120 days	72
3.3	Pearson correlation coefficients among parameters measured	74
3.4	Effect of rates of coffee residue on percent residue N remaining for the incubation period of 120 days	80
3.5	Average response of soil temperature to rate of coffee residue application	80
3.6	Effect of rates of coffee residue on pH of the soil for the incubation period of 120 days	83
3.7	Response of total soil nitrogen and OM to different rates of coffee residue application for the incubation period of 120 days	84
3.8	Effect of time of incubation on availability of soil potassium and phosphorus from decomposing coffee residue for the incubation period of 120 days	86
3.9	Response of soil CEC to application of different rates of coffee residue for the incubation period of 120 days	88
3. 10	Effect of time of incubation and rates of coffee residue on exchangeable cations of the soil treated	88
4.1	Rainfall distribution during the growing season of 2003 in maize/haricot bean field experiment	121
4.2	Nutrient status of the experimental soil and coffee residue before planting	122
4.3	Effect of coffee residue and N fertilizer on growth parameters of maize	123
4.4	Response of maize yield to application of coffee residue and N fertilizer	124
4.5	Effect of cropping system on grain yield and yield attributes of maize	125
4.6	Pearson correlation coefficients for grain yield and yield attributes of maize	125

Table

.

4.7	Effect of coffee residue and N fertilizer on yield (grain, stover and dry matter) and dry matter partitioning of haricot bean	126
4.8	Response of grain, stover and dry matter yields of haricot bean to cropping system	127
4.9	Pearson correlation coefficients for grain yield and yield attributes of haricot bean	128
4.10	Effect of coffee residue and N fertilizer on total LER of maize/haricot bean intercrop	129
4.11	Effect of coffee residue and N fertilizer on competitive ratio of maize and haricot bean	130
4.12	Response of water use efficiency (WUE) of maize and haricot bean to application of coffee residue and N fertilizer	131
4.13	Effect of coffee residue and N fertilizer on N uptake in aboveground dry matter of maize	133
4.14	Effect of cropping system on nutrient uptake in grain, stover and aboveground dry matter of maize	135
4.15	Effect of coffee residue and N fertilizer on P uptake in aboveground dry matter of maize	136
4.16	Effect of coffee residue and N fertilizer on K uptake in aboveground dry matter of maize	138
4.17	Effect of coffee residue and N fertilizer on N uptake in aboveground dry matter of haricot bean	139
4.18	Effect of cropping system on nutrient uptake in grain, stover and aboveground dry matter of haricot bean	140
4.19	Effect of coffee residue and N fertilizer on P uptake in aboveground dry matter of haricot bean	141
4.20	Effect of coffee residue and N fertilizer on K uptake in aboveground dry matter of haricot bean	143

Table

4.21	Effect of coffee residue and N fertilizer on N, P, and K uptake in the aboveground dry matter of maize and haricot bean together	144
4.22	Effect of coffee residue and N fertilizer on nutrient harvest index (NuHI) in maize	146
4.23	Effect of coffee residue and N fertilizer on nutrient harvest index of haricot bean	147
4.24	Effect of coffee residue and N fertilizer on total nitrogen (TN) and organic matter (OM) of the soil	150
4.25	Effect of coffee residue and N fertilizer on available potassium (K) and phosphorus (P) of the soil	151
4.26	Response of soil CEC to application of coffee residue and N fertilizer	153
4.27	Effect of coffee residue and N fertilizer on exchangeable cations of the soil	154
4.28	Response of soil pH to application of coffee residue and N fertilizer	155
4.29	Effect of cropping system on selected soil physical and chemical properties at harvest	156
4.30	Stepwise multiple regression equations for content and uptake of N, P and K in the top dry matter, and grain yields of maize and haricot bean	161

LIST OF FIGURES

Figure

riguie		1 age
1a	Concentration of lignin with time (T)	71
1b	Effect of time of incubation on cellulose content of coffee residue	73
1c	Effect of time of incubation on hemcellulose content of coffee residue	74
2a	Percent dry matter remaining after each time of incubation	75
2b	Effect of rates of coffee residue on dry matter of residue remaining	76
3	Time of incubation (T) and rates of residue on decomposition rate (KD)	77
4a	Effect of time of incubation on immobilization of soil nitrogen	78
4b	Response of soil N immobilization to rates of coffee residue	79
4c	Percent of initial N remaining in coffee residue with time	79
5a	Effect of time of incubation on moisture content (SMC) of the soil amended with coffee residue	81
5b	Effect of rates of coffee residue on moisture content (SMC) of the soil	82
6	Effect of time of incubation on soil pH treated with coffee residue	83
7	Effect of time of incubation on total N of the soil treated with coffee residue	84
8	Effect of time of incubation on organic matter of the soil treated with coffee residue	85
9	Effect of time of incubation on soil CEC amended with coffee residue	87
10	Decomposition and mineralization of N from coffee residue (Mg ha ⁻¹) treated with N fertilizer. Standard error of each point is shown with a bar	148
11	Response of soil moisture (SM) to application of coffee residue (Mg ha ⁻¹) and N fertilizer. Bars with same letter denote no significant difference (P \geq 0.05)	149

Page

Figure

12a	Apparent N balance in maize/haricot bean intercrop treated with coffee residue (Mg ha ⁻¹) and N fertilizer. Standard error of each point is shown with a bar	157
12b	Apparent P balance in maize/haricot bean intercrop treated with coffee residue (Mg ha ⁻¹) and N fertilizer. Standard error of each point is shown with a bar	159
12c	Apparent K balance in maize/haricot bean intercrop treated with coffee residue (Mg ha ⁻¹) and N fertilizer (kg ha ⁻¹). Standard error of each point is shown with a bar	160
13	Monetary advantage (MA) of intercrop treated with different combinations of coffee residue (Mg ha ⁻¹) and N fertilizer (kg ha ⁻¹). Standard error of each point is shown with a bar.1U.S.Dollar = 8.50 Ethiopian birr	162

LIST OF ABBREVIATIONS

BOPED	Bureau of Planning and Economic Development
SNNNRS/UNECA	Southern Nation Nationalities and Regional State//United Nations Economic Commission for Africa
FAO	Food and Agricultural Organization of the United Nations
СТА	Coffee and Tea Development
CSA	Central Statistics Authority
MOA	Ministry of Agriculture
DAP	Diammonium Phosphate
KD	Decomposition Rate Constant
LER	Land Equivalent Ratio
CR	Competitive Ratio
WUE	Water use Efficiency
TWUE	Total Water Use Efficiency
CIMMYT	International Wheat and Maize Research Organization, Mexico
CIAT	International Research Institute for Tropical Pulses
ICARDA	International Centre for Agricultural Research for Dry Land Agriculture
LAI	Leaf Area Index
AARC	Awassa Agricultural Research Centre
MA	Monetary Advantage
USDA	United States Department of Agriculture

