

UNIVERSITI PUTRA MALAYSIA

DYNAMICS OF CURRENT AND RESIDUAL PHOSPHORUS IN TROPICAL ACID SOIL

ESTHER WAKIURU GIKONYO.

FP 2005 2

DYNAMICS OF CURRENT AND RESIDUAL PHOSPHORUS IN TROPICAL ACID SOIL

By

ESTHER WAKIURU GIKONYO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

January 2006

DEDICATION

This work is dedicated to my lovely husband:

JOHN GIKONYO

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DYNAMICS OF CURRENT AND RESIDUAL PHOSPHORUS IN TROPICAL ACID SOIL

By

ESTHER WAKIURU GIKONYO

January 2006

Chairperson: Professor Zaharah Abdul Rahman, DSc

Faculty: Agriculture

The use of phosphate rocks (PRs) has been proposed as an agroeconomically sound alternative to the more expensive superphoshates particularly, for P 'recapitalization' based on their purportedly high residual effects in acid tropical soils. To understand the current and residual dynamics of P from different P sources, one laboratory incubation trial and two field experiments were conducted. Experimental treatments comprised factorial combinations (3x4x2) of three P sources [Triple superphosphate (TSP), Gafsa PR (GPR) and Christmas Island PR (CIPR)] at four P rates with and without manure in three replications. Setaria grass (Setaria Anceps Stapf. Cv. Kazungula) was used as the test crop and was sequentially harvested bimonthly for 14 months in the field. Results indicated that the amounts of P extracted from treated soils using three soil tests: Mehlich-3 (M3P), Bray-1 (B1P) and Pi-strip (Pi-P) were in the order: M3P>B1P (85% M3P) >Pi-P (53% M3P) and were significantly related ($R^2=0.42$ to 0.83, n=294). Phosphorus extracted from the different P sources was in the order: TSP>GPR>CIPR and increased with increasing P rates. When P rates were raised from 0 to 300 kg

decreased substantially at the highest P rate. The degree of phosphorus saturation (DPS) (defined as a ratio of P already adsorbed to P adsorption capacity of a soil) also varied with P sources (5.1 to 15.8%) and extractants (2.1 to 44%) following a similar order to extractable P. The variously estimated DPS values were all significantly correlated (r =0.91 to 0.98) and therefore were equally suitable in estimating DPS. Sequential strip P indicated that P released was described by power (R²=0.79 to 0.95) (TSP) and exponential (PR) functions (R^2 =0.77 to 0.99), while from the field trial, a power function described RV of P in both PRs and TSP ($R^2=0.64$ to 0.96). Total extracted Pi-P was related to NaHCO3 inorganic and organic P (Bic-Pi and Po), and HCI-P. However, though the Pi-strip could estimate P release, it could not estimate residual value (RV). Residual value is the ratio of amount of freshly applied TSP required to produce yield X to the amount of previously applied fertilizer required to produce the same yield X. The dry matter yield (DMY) exhibited a quadratic relationship with P rates. The maximum DMY (6-11 t ha⁻¹) was attained at 150-200 kg P ha⁻¹ and over time, DMY increased to a maximum(11 t ha⁻¹) and then declined to a constant yield (2-4 t ha⁻¹) after one year. Manure-CIPR integration increased DMY while, manure-GPR and manure-TSP integration depressed yields except in the initial harvest. Setaria DMY was found to be related to NaOH-organic and -inorganic P (Hyd-Po and Hyd-Pi, respectively), and Bic-Po fractions, which are not accounted for in M3P or B1P thus explaining the low R^2 between DMY and M3P ($R^2=0.08$) or B1P (R²=0.10). The current RVs of the three fertilizers determined in the field were 100, 100 and 140% for CIPR, GPR and TSP, respectively at 100 kg P ha⁻¹. At the same rate, fertilizer-manure integration increased initial RV to 180,

160 and 110% in TSP, CIPR and GPR treatments. With an exception of CIPR-manure, RV was depressed by manure in the other fertilizers in subsequent harvests after the initial one. The RV also declined with increasing P rates as evidenced by current RV decline to 20, 60 and 50% in CIPR, GPR and TSP, respectively when P rate was raised from 100 to 300 kg P ha⁻¹. The RV declined to 30-40% for the first six months and then gradually to 10 – 20% after one year (power function). These results indicated that GPR and CIPR-manure combination were as good as TSP and the optimal P rate was 100 - 150 kg P ha⁻¹. The results did not support P 'recapitalization' in this soil but annual applications. The RV could be estimated from the P fractions: Bic-Po, Hyd-Pi and Hyd-Po, and DPS computed from Mehlich extracted AI, Fe and P. The RV had no relationship with M3P or B1P.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

DINAMIK FOSFORUS SEMASA DAN RESIDU DALAM TANAH ASID TROPIKA

Oleh

ESTHER WAKIURU GIKONYO

Januari, 2006

Pengurusi: Profesor Zaharah Abdul Rahman, DSc

Fakulti: Pertanian

Batuan fosfat (PRs) telah dicadangkan sebagai satu alternatif baia P yang agronomik dan ekonomik berbanding baja superfosfat (kebiasaannya TSP), terutama sekali sebagai sumber untuk membekal unsur P dalam jangkamasa panjang. Ini berdasarkan kemampuan batuan fosfat meninggalkan kesan residunya yang lama dalam tanah-tanah asid tropika. Untuk memahami dinamik semasa dan residu unsur P dari berbagai sumber baja P, satu kajian pemeraman di makmal dan dua kajian ladang telah dijalankan. Kajian dijalankan dengan menggunankan rawatan kombinasi faktorial (3x4x2) yang terdiri dari tiga sumber baja P: Triple superphosfat (TSP), batuan fosfat Gafsa (GPR) dan batuan fosfat Pulau Christmas (CIPR) pada empat kadar dengan/tanpa baja kandang dalam tiga replikasi. Rumput Setaria (Setaria anceps Staff.Cv. Kazungula) digunakan sebagai tamanan ujian yang dituai setiap dua bulan selama 14 bulan di ladang. Keputusan menunjukkan jumlah P diekstrak dari tanah yang dirawat menggunakan tiga kaedah pengekstrak: Mehlich-3 (M3P), Bray-1 (BIP) dan Pi-strip (Pi-P) mengikut turutan M3P>B1P (85% M3P) >PiP (53% M3P) dan mengpunyai kaitan yang bererti (R²=0.42 hingga 0.83, n=294). Fosforus terekstrak dari

sumber-sumber baia vang digunakan mengikut turutan TSP>GPR>CIPR dan meningkat dengan bertambahnya kadar baja yang diberi. Apabila kadar P ditingkatkan dari 0 hingga 300 kg P ha⁻¹, BIP meningkat sebanyak 470% (TSP) dan 160% (PRs). Kelarutan PR sangat menurun pada kadar P tertinggi. Kadar ketepuan P (DPS) (didefinasikan sebagai nisbah P terjerap kepada keupayaan penjerapan P oleh tanah) juga berbeza mengikut sumber P (5.1 hingga 15.8%) dan larutan pengekstrak yang digunakan (2.1 hingga 44%) mengikut turutan yang sama dengan P yang terekstrak. Nilai anggaran DPS yang dilakukan semuanya menunjukkan kaitan yang bererti (r=0.91 hingga 0.98) dan dengan itu semuanya sesuai untuk digunakan Pengekstraktan berulangan menggunakan untuk menanggar nilai DPS. kertas disaluti ferum oksida (Pi-strip) menunjukkan P yang dilepaskan boleh di terangkan dengan fungsi kuasa (R²=0.79 hingga 0.95) (TSP) dan eksponen (R²=0.79 hingga 0.95) (PR), manakala daripada kajian ladang, fungsi kuasa menerangkan RV baja P untuk kedua-dua PR dan TSP (R²=0.64 hingga 0.96). Jumlah Pi-P didapati berkaitan dengan bikarbonat tak organik dan P organik, dan HCI-P. Tetapi, sungguhpun Pi-P mampu menganggar perlepasan P, ianya tidak dapat diguna untuk menganggar keberkesanan relatif nilai residu (RV). Nilai residu ialah nisbah jumlah TSP segar diberi diperlukan untuk menghasilkan hasil X kepada jumlah baja yang diberi terdahulu untuk menghasilkan hasil X yang sama. Hasil berat kering (DMY) menunjukkan kaitan kuadratik dengan kadar P digunakan. DMY.maksimum (6-11 t ha⁻¹) diperolehi apabila 150-200 kg P ha⁻¹ digunakan⁻ Dengan meningkatnya masa, DMY meningkat ke maksimum (11 t ha⁻¹) dan menurun sehingga ke tahap stabil (2-4 t ha⁻¹) selepas setahun.

Campuran baja kandang dan CIPR tingkatkan DMY, manakala campuran dengan GPR dan TSP turunkan hasil, kecuali pada hasil pertama. Hasil rumput setaraia didapati ada kaitan dengan Hyd-Po dan Hyd-Pi, dan pecahan Bic-Po yang tidak diekstrak oleh Mechlich-3 dan Bray-1. Keberkesanan relatif nilai residu (RV) semasa ketiga-tiga sumber baja yang ditentukan di ladang menunjukkan 100, 100 dan 140% untuk CIPR, GPR dan TSP pada kadar 100 kg P ha⁻¹. Pada kadar yang sama. campuran dengan baja kandang tingkatkan RV diperingkat awal ke 180, 160 dan 110% untuk rawatan TSP, CIPR dan GPR. Hasil seterusnya menunjukan penurunan RV dengan campuran baja kandang, kecuali CIPR. RV juga didapati menurun dengan meningkatnya kadar baja P, dimana didapati RV menurun ke 20, 60 dan 50% bagi CIPR, GPR dan TSP apabila kadar P ditingkatkan dari 100 ke 300 kg P ha⁻¹. Dalam masa 6 bulan pertama, RV menurun ke 30-40% dan seterusnya ke 10-20% selepas satu tahun (fungsi "power"). Keputusan kajian menunjukkan bahawe campuran GPR dan CIPR dengan baja kandang adalah sama baik dengan TSP. Kadar yang optimum ialah 100-150 kg P ha⁻¹. Keputusan yang didapati dari kajian ini tidak menyokong konsep "P recapitalization" dalam tanah, malah disyorkan agar P diaplikasikan setiap tahun. Keberkesanan relatif nilai residu (RV) boleh dianggar daripada pecahan-pecahan P: Bic-Po, Hyd-Pi, dan Hyd-Po, dan DPS-M3P, tetapi tiada kaitan dengan M3P atau B1P.

ACKNOWLEDGEMENTS

The successful completion of this work is accredited to the support of many special people and I am greatly indebted to them. In this regard, my sincere appreciation is extended foremost, to the chairman of my supervisory committee, Prof. Zaharah Abdul Rahman for her professional guidance, support, patience and and constructive comments from the beginning to the end of my study.

I am also very grateful to the other members of my supervisory committee, Assoc. Prof. Mohd Hanafi Musa and Assoc. Prof. Anuar Abdul Rahim for the benefit of their authoritative knowledge, helpful suggestions, valuable comments and critical review of the entire reaseach and writing of the manuscript. Their constant suggestions and comments made the completion of this work possible.

Many thanks also to Zabeda Tumurin, Mayudin Othman, Junaidi Jafaa, Farida Aman, Alias Tahar, Fouziah Sulaiman, Linggam Kaudiah, Abdul Rahim, Zainudin Mohd Ali and Jamil Omar for their valuable assistance in every way. I also acknowledge the kind assistance of Dr. Bah Abdul, Dr. Mohamadu Boyie Jalloh and Dr. Osumanu Haruna Ahmed, and the entire staff of the Department of Land Management, Universiti Putra Malaysia for their wonderful cooperation.

1000566091

My profound gratitude to the director, Kenya Agricultural Research Institute, Dr. Romano Kiome for granting me the opportunity to undertake this study. Thanks also to the director, National Agricultural Research Laboratories.

The financial support by the Third World Organisation of Women in Sciences (TWOWS) is greatly appreciated.

Also special thanks to the members of my family, especially my son, Morris for his assistance during my field activities and keeping me company throughout the course of my study. I also express my gratitude to my daughters, Lucy and Nancy for their endurance and patience during the many days of my absence from home and for their endless love. I am grateful to my father and mother for the assurance of their prayers and encouragement. The kind support of my sisters Rosemary, Juliet and Caroline are also greatly appreciated.

Finally and greatly acknowledged is the Lord God Almighty who enabled me to successfully complete this work, and without whom all other efforts would have been futile (Psalms 127:1 - 2). Great appreciation for prayers of my Kenya church members, P.C.E.A. Ongata Rongai; my church in Kuala Lumpur Malaysia (FGA); my mentors, Edward Andegwi and godly ladies, co-labourers in the lord Jesus Christ from KARI and all others who interceeded for me and my family. Special thanks to to Bishop Mto Rukaria Gitonga for his prayers and prophetic foresight.

10

TABLE OF CONTENTS

	Page
DEDICATION	2
ABSTRACT	3
ABSTRAK	6
ACKNOWLEDGEMENTS	9
APPROVAL	11
DECLARATION	13
LIST OF TABLES	19
LIST OF FIGURES	21
LIST OF ABBREVIATIONS/NOTATION/GLOSSARY OF TERMS	26

CHAPTER

1	INTRODUCTION	30
11	LITERATURE REVIEW	38
	Importance of Phosphorus	38
	Phosphorus Fertilizer Inputs	39
	Direct Application of PRs	40
	Dissolution of PR	41
	Phosphate Rock Physical Factor	42
	Phosphate Rock Chemical Factors	42
	Soil Chemical Parameters	43
	Plant Factors	44
	Effect of Organic Manures on PR Dissolution	44
	Fate of Fertilizer Phosphorus in the Soil	45
	Effects of Organic Matter on P Sorption	47
	Soil Testing Methods	48
	Degree of Phosphorus Saturation	50
	Phosphorus Release Kinetics	54
	Soil Phosphorus Pools/Fractions and Transformations	55
	Residual P	57
	Justification of the Study	60
111	GENERAL METHODOLOGY	62
	Materials	62
	Characterization of Experimental Materials	63
	Other Methods Used in the Study	70
	Phosphorus Fractionation and Analysis	70
	Extractable Aluminium and Iron Oxides	72
	Dithionite-Citrate Extractable AI and Fe Acid Oxalate	72

	Extractable AI and Fe	73
	Mehlich-3 Extractable AI and Fe	73
	Phosphate Sorption Index	73
	Calculation of the Degree of Phosphorus Saturation	74
	Statistical Analysis	75
IV	PHOSPHATE DESORPTION BY SUCCESSIVE EXTRACTIONS WITH IRON OXIDE IMPREGNATED PAPER STRIP FROM	
	SOILS TREATED WITH DIFFERENT P FERTILIZERS	76
	Introduction	76
	Materials and Methods	78
	Soil Sampling and Preparation	78
	Soil Treatment and Equilibration Procedure	78
	Sequential Extraction of P with Pi-Strip Procedure	79
	Analysis of Other Soil Parameters	79
	Results	80
	Effect of Treatments on Extractable Mehlich-3 and Bray-1 P	80
	Effect of Treatments on Phosphate Sorption Index	83
	The DPS Computed From Available P and PSI	83
	Effect of Treatments on AI, Fe, P and DPS Extracted by Different Reagents	86
	Ammonium Oxalate Extractable AI, Fe, P and DPS	86
	Mehlich-3 Extractable Al, Fe, P and DPS	88
	Citrate Dithionite Extractable AI, Fe, P and DPS	91
	Correlation between PSI, AI, Fe, and AI + Fe Extracted by	00
	Different Reagents	92
	Correlation between DPS and PSI	94
	Sequentially Extracted P Using PI-strip	95
	Phosphorus Fractions	103
	Bicarbonate Inorganic Fraction Bisarbonate Organic B Erection	103
	Hydroxide Inorganic P Fraction	105
	Hydroxide Organic P Fraction	109
	HCI-P Fraction	111
	Discussion	113
	Extractable P	113
	Phosphate Sorption Index	114
	Extractable Fe, Al, P and Resulting DPS for Various	
	Reagents	115
	Oxalate Extractable Fe, Al, P and DPS	115
	Mehlich 3 Extractable Al, Fe, P and DPS	117
	Citrate Dithionite Extractable AI, Fe, P and DPS Correlation between DSI and Eq. Al and Eq. + AI Extracted	117
	by Different Respents	118
	Correlation between DPS and PSI	119
	Phosphorus Sequentially Extracted Pi-strip	119

	Phosphorus Fractions	121
	Conclusions	122
v	CURRENT AND RESIDUAL P AVAILABILITY IN AN	
	ACID SOIL FERTILIZED WITH DIFFERENT P INPUTS	125
	Introduction	125
	Materials and methods	129
	Experimental Treatments	129
	Experimental Layout and Experimental Design	130
	Rainfall Pattern	132
	Soil Sampling	133
	Soil Preparation	133
	Setaria Grass Establishment	133
	Plant Harvesting and Sampling	134
	Plant Material Preparation	134
	Plant Tissue Analysis for Nutrients Content	135
	Soil Analysis	135
	Calculations	136
	Residual Effectiveness of Fertilizers	136
	Degree of Phosphorus Saturation	137
	Statistical Analysis	137
	Results	137
	Available Soil P	137
	Mehlich-3 Extractable P	137
	Bray 1 Extractable P	138
	PI-Strip P Socquievides	141
	Meblich 2 Extractable Sesquiovides	140
	Ovalate Extractable Al Fe and P	140
	Citrate Dithionite Extractable Al, Fe and P	156
	Comparison of AI, Fe and P Extracted by Mehlich 3,	
	Citrate Dithionite and Ammonium Oxalate Methods	162
	Degree of Phosphorus Saturation	164
	Sequential P fractions	169
	I otal Bicarbonate P Bisarbonate Incorporie Exaction	169
	Bicarbonate Organic Plfaction	170
	Hydroxide Total P	174
	Hydroxide Inorganic Fraction	174
	Hydroxide Organic P	177
	HCI- P Fraction	177
	Residue P Fraction	180
	I Otal M Comparison of All the B Fractions	180 191
	Plant Parameters	185
	Dry Matter Yield	185

Phosphorus Content in Plant Tissue	189
Phosphorus Uptake	194
Zinc content and uptake	195
Potassium and Magnesium Contents	198
Residual Effectiveness of the Different Fertilizers	199
Residual Effectiveness of the Different Fertilizers	
Computed from the Slopes of Response Curves	199
	202
A Different Rates of Application Relationship between Vield Parameters and the Various	203
Soil Parameters	209
Relationship between Yield Parameters and	200
Available P	209
Relationship between Yield Parameters and	
Degree of Phosphorus Saturation	214
Relationship between Yield Parameters and	
Different P Fractions	216
Relationship between Residual Value and the	
Different P Fractions	221
Relationship between Residual Value and Available P by the different Mothede	222
Discussion	223
Seguiovides	220
Degree of Pheenhorue Seturation	223
Sequential December on Exections	220
Sequencial Phosphorus Fractions	220
	228
	232
Setaria Dry Matter Yields	234
Residual Value	237
Conclusions	239
ASSESSMENT OF PHOSPHORUS LEACHING IN 'P	
RECAPITALIZED SOILS USING DIFFERENT P SOURCES	5
IN THE FIELD	242
Introduction	242
Materials and Methods	243
Experimental Site	243
Experimental Treatments and Design	245
Preparation of Resin Baos	245
Installation of Intact Leaching Columns and Resin	
Bags in the Field	246
Resin Sampling	248
Elution of P and Analysis	249
-	

249

249

250

Calculation of P leached.

Statistical Analysis

Results

VI

Effects of Different Treatments on P Leached from the Leaching Columns	250	
Mehlich-3 Extractable P and Ca from the Top Soil Samples at the End of Experiment Mehlich 3 Extractable P and Ca from the Sub Soil	251	
Samples at the End of the Experiment	255	
Discussion	257	
Phosphorus Leached in Relation to P Sources, P Rates and Manure from the Leaching Columns Phosphorus Leached Based on Extractable Mehlich-3 P	257	
in the Top and Sub-Soil Samples.	259	
Conclusions	260	
	262	
REFERENCES		
BIODATA OF THE AUTHOR		

LIST OF TABLES

Table		Page
3.1	Chemical characteristics of the soil used	67
3.2a	Characteristics of fertilizers and manure used	68
3.2b	Additional characterization of the dry cattle manure	69
4.1	Pearson correlation coefficients / probabilities between Al, Fe, Al+Fe extracted by different reagents and PSI	92
4.2	Simple Statistics for DPS and PSI	95
4.3	Pearson correlation coefficients between the different DPS and PSI	96
4.4	Summary of the statistical analysis of the individual Pi-strip P extractions	98
4.5	Equation and regression coefficients of the P desorption of the various P sources with and without manure at different P application rates	100
5.1	Effect of different factors on Mehlich-3 extractable Fe and Al	147
5.2	Effect of various factors on oxalate extractable AI, Fe, and P	151
5.3	Effect of various factors on citrate dithionite extractable Fe, AI and P	157
5.4	Simple statistics for Fe, AI and P extracted by Mehlich-3, citrate dithionite and ammonium oxalate	163
5.5	Pearson correlation coefficients /probability for the Fe, Al and P extracted by citrate dithionite, ammonium oxalate and Mehlich-3) reagents	164
5.6	Simple statistics of the nine P fractions and total P	184
5.7	Pearson correlation coefficients/probability of all the fractions and total P	185
5.8	Slopes of the three point linear response functions for fresh TSP and the other fertilizers with and without manure for yields at 2 to 14 months (excluding yield at 4 months)	201
5.9	Regression parameters for Bray-1, M3P and Pi-Strip P on P uptake and on yield	211

5.10	Stepwise multiple regression summary for P fractions vs. B1P, M3P, P content and DMY for; (a) All data minus control (b) Control	217
5.11	Multiple regression summaries of data partitioned into TSP and PRs	219
5.12	Multiple regression summaries of the data partitioned by P rates at 100 and 300 kg P ha ⁻¹	220
5.13	Multiple regression summaries of the various P fractions on residual value for: all data, partitioned into 100 and 300 kg P ha ⁻¹ and partitioned into PRs and TSP	222
5.14	Pearson correlation coefficients of different P fractions and extractable sesquioxides by different reagents	230

LIST OF FIGURES

Figure		Page
3.1	X-ray diffractograms of GPR and CIPR.	66
3.2	Flow chart of the sequential P fractionation procedure in soil modified from Hedley et al. (1982). The Pi, Pt and Po, represent inorganic, total and organic phosphorus	71
4.1	Effects of P source x P rate x manure on extractable P by (a) Bray-1, and (b) Mehlich-3	81
4.2	Relationship between Bray-1 and Mehlich-3 extractable P from soil treated with different P sources	82
4.3	Effects of P source x P rate x manure on PSI	84
4.4	Effects of P source x P rate x manure on (a) DPS-BrayPSI and (b) DPS-MehPSI	85
4.5	Effect of P sources x P rate x manure on (a) Ox-Al, (b) Ox-Fe, (c) Ox-P, and (d) DPS-Ox	88
4.6	Effects of P source x P rate x manure on Mehlich-3 extractable (a) Meh-Al, (b) Meh-Fe, (c) Meh-P, and (d) DPS-MehPSI	90
4.7	Effects of P source x P rate x manure on (a) CD-AI, (b) CD-Fe, (c) CD-P, and (d) DPS-CD	93
4.8	Relationships between the different DPS (a) DPS-MehPSI vs. DPS-MehAF, (b) DPS-BrayPSI vs. DPS-MehAF, (c) DPS-CD vs. DPS-MehAF, (d) DPS-CD vs. DPS-Ox, (e) DPS-MehPSI vs. DPS-CD, (f) DPS-BrayPSI vs. DPS-CD, (g) DPS-BrayPSI vs. DPS-Ox, (h) DPS-MehPSI vs. DPS-Ox, and (i) DPS-MehPSI vs. DPS-BrayPSI	97
4.9	Effect of different P sources with and without manure on Pi- strip P at P rates (a) 0 (control), (b) 100, (c) 200, and (d) 400 mg P kg^{-1}	99
4.10	Relationship between (a) Constant 'a' vs. initial Pi-strip P and (b) Total P vs. initial Pi-strip P	102
4.11	Constant b vs. (a) DPS-CD, (b) DPS-MehAF, (c) DPS-Ox, and x-exponent vs. (d) DPS-CD, (e) DPS-MehPSI, and (f) DPS-Ox	102

4.12	Relationship between total P and (a) DPS-CD, (b) DPS-Ox, (c) DPS-MehPSI, and (d) DPS-BrayPSI	103
4.13	Effects of P source x P rate x manure on Bic-Pi (a) Prior and (b) After the Pi-strip P extraction	106
4.14	Effects of P source x P rate x manure on Bic-Po (a) Prior and (b) After the Pi-strip P extraction	106
4.15	Effects of P source x P rate x manure on Hyd-Pi (a) Prior and (b) After the Pi-strip P extraction	110
4.16	Effects of P source x P rate x manure on Hyd-Po (a) Prior and (b) After the Pi-strip extraction	111
4.17	Effects of P source x P rate x manure on HCI-P (a) Prior and (b) After the Pi-strip P extraction	112
5.1	Experimental site location showing residual (left) and fresh TSP (right) plots location before planting	131
5.2	Bimonthly total rainfall for the experimental period between June 2003 and July 2004	132
5.3	Effects of different P sources with and without manure at rates (a) 0 (b) 100, and (c) 300 kg P ha ⁻¹ on extractable M3P over time	140
5.4	Effects of different P sources with and without manure at rates (a) 0, (b) 100, and 300 kg P ha ⁻¹ on extractable Bray 1 P over time	142
5.5	Effects of the different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ P on Pi-strip P.	143
5.6	Relationship between the three soil tests (a) M3P vs. B1P, (b) B1P vs.Pi-Strip P and (c) M3P vs. Pi-Strip P	145
5.7	Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha ⁻¹ on Mehlich 3 extractable AI over time	148
5.8	Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha ⁻¹ on Mehlich 3 extractable Fe over time	149
5.9	Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on oxalate extractable Fe over time	152

5.10	Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha ⁻¹ on oxalate extractable Al over time	153
5.11	Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on oxalate extractable P over time	155
5.12	Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha ⁻¹ on citrate dithionite extractable Al over time	158
5.13	Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c)300 kg P ha ⁻¹ on citrate dithionite extractable Fe over time	159
5.14	Effect of different P sources with and without manure at different rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on citrate dithionite extractable Fe over time	161
5.15	Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on citrate dithionite DPS over time	166
5.16	Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha ⁻¹ on oxalate DPS over time	167
5.17	Figure 5.17: Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on Mehlich DPS over time	168
5.18	Effects of different P sources with and without manure at the rates (a) 0 (control), (b) 100, and (c) 300 kg P ha ⁻¹ on total inorganic bicarbonate fraction	171
5.19	Effects of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on inorganic bicarbonate P fraction	172
5.20	Effect of P Sources with and without manure at P rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on organic bicarbonate fraction	173
5.21 5.22	Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on total hydroxide P fraction. Effect of P sources with and without manure at P rates (a)	175
	0, (b) 100, and (c) 300 kg P ha ⁻¹ on inorganic hydroxide P fraction	176

5.23	Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on organic hydroxide P fraction over time	178
5.24	Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on hydrochloric acid P fraction	179
5.25	Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha ⁻¹ on residue-P fraction	182
5.26	Effects of different P sources with and without manure at rates (a) 0, (b) 100 and (c) 300 kg P ha ⁻¹ on total P	183
5.27	Yield response curves for the different P sources with and without manure for harvests one to seven excluding harvest six, (since it was similar to harvest seven)	187
5.28	Photograph of a general view of the crop at different harvests	188
5.29	Changes of cumulative setaria dry matter yields as influenced by different P sources with and without manure	190
5.30	Setaria DMY changes of all the harvests as influenced by different P sources with and without manure at rates (a) 0 (control) & 100 (b) 200, and (c) 300 kg P/ha	191
5.31	Effect of P rates on average P content in plant tissue for the different P sources with and without manure	192
5.32	Setaria P content in plant tissue over time as influenced by different P sources with and without manure at rates (a) 0 (control) &100 (b) 200 and (c) 300 kg P ha ⁻¹	193
5.33	Setaria P uptake changes over time as influenced by different P sources with and without manure at rates (a) 0 (control) & 100 (b) 200 and (c) 300 kg P ha ⁻¹	196
5.34	Effects of P fertilizer rate on cumulative P uptake for all the fertilizers with and without manure	197
5.35	Effect of manure addition on Zn uptake by setaria grass	197
5.36	Zinc uptake changes over time for the different fertilizer	109
5.37	Three point linear response functions for all fertilizer treatments and fresh TSP response for harvests one to seven excluding harvest two which showed no response to	190
	any P source	200