

UNIVERSITI PUTRA MALAYSIA

PERFROMANCE AND STABILITY OF GRAIN MAIZE GENOTYPES IN PENINSULAR MALAYSIA

THAN DA MIN.

FP 2004 38

PERFORMANCE AND STABILITY OF GRAIN MAIZE GENOTYPES IN PENINSULAR MALAYSIA

.

BY

THAN DA MIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2004

DEDICATION TO MY BELOVED PARENT, SISTERS, SUPPORTIVE HUSBAND AND SON

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PERFORMANCE AND STABILITY OF GRAIN MAIZE GENOTYPES IN PENINSULAR MALAYSIA

By

THAN DA MIN

March 2004

Chairman : Professor Ghizan Saleh, Ph. D.

Faculty : Agriculture

In plant breeding programmes, potential genotypes are usually evaluated in different environments (locations and years) before desirable ones are selected. Genotype x environment (G x E) interaction is associated with the differential performance of materials tested at different locations and in different years, and influences selection and recommendation of cultivars. Highly stable genotypes are desirable. Furthermore, spatial variability on soil properties and crop yield has been one of the major objectives in investigations related to agriculture production. Performance and stability of grain maize (*Zea mays* L.) genotypes were evaluated at four locations in Peninsular Malaysia *viz*. Padang Rengas (Perak), Rhu Tapai (Terengganu), Sungai Udang (Melaka) and UPM, Serdang (Selangor), in two years.

The objectives of this study were: (1) to determine the performance of 14 grain maize genotypes for grain yield and yield components at the four locations in two years, (2) to evaluate the G x E interaction effects, (3) to identify high yielding genotypes at each location and their stability by using different stability parameters, (4) to evaluate the

spatial variability of soil N, P and K, plant N, P and K, and their influence on grain yield, and (5) to investigate the relationship among grain yield and soil and plant nutrient variables.

The experiments at the locations were arranged in a randomized complete block design (RCBD) with four replications. Recommended agronomic practices were used at each location. Evaluations were conducted from June 2000 to March 2002. Genotype and G x E interaction effects were highly significant, indicating high variability among genotypes, and genotypes responded differently to the changing environments. Among the 14 genotypes evaluated, GxA, Selected GxA, SC-2, Putra J-58 and TWC-4 revealed high performance and have good potential to be used as source populations for future breeding programmes. Comparing performance of genotypes for grain yield and yield components, Selected GxA was found to have the highest grain yield (5726 kg ha⁻¹), shelling percentage (84.9 %), 100-grain weight (25.5 g) and ear weight per plant (149.5 g), earliest in flowering (50.6 days to tasseling, and 53.2 days to silking) and longest ears (15.5 cm). TWC-2 was found to be earliest to mature. SC-3 revealed the shortest plants, while Suwan 1 was the tallest and was late in maturity. The highest ear diameter was observed on SC-1. Terengganu in 2000 was found to be the most favourable environment, as shown by its highest environmental index.

Different methods of stability analyses were used, which include comparison of mean values, regression coefficient (b_i), deviation from regression (s_d^2), coefficient of determination (R^2), environmental variance (s^2), Wricke's ecovalence (W_i), Shukla's stability variance (σ_i^2) and genotype grouping involving coefficients of variation (CV).

Different methods were consistent with each other in revealing the stability of the genotypes. Selected GxA was identified as having the highest grain yield and most stable in performance, followed by DC-1, while SC-2 was the lowest yielding and most unstable genotype. Some genotypes revealed specific adaptability to specific locations, such as GxA in Perak, Putra J-58 in Terengganu and Selected GxA in Melaka and Selangor. This experiment led to the identification and possible release of a new, high yielding and stable grain maize synthetic variety, Selected GxA.

Broad-sense heritability estimates on the genotypes were moderate for grain yield in the year 2001 evaluation and years combined, and also for ear length, ear diameter and number of kernel rows per ear in each year and years combined. These indicate that genetic factors had moderate effects on the control of grain yield, ear length, ear diameter and number of kernel rows per ear in the population of genotypes.

In addition to the evaluation on genetic stability, spatial variability for grain yield and leaf and soil chemical properties were also evaluated at the four locations, where, different patterns of spatial variability for grain yield, and leaf and soil chemical properties were observed in the fields at all locations. The analysis also revealed that percent variability in grain yield variation was associated with soil N, P and K and leaf P contents. Grain yield was particularly positively correlated with soil P and K contents.

The results also indicate the effectiveness of site-specific soil management such as reduced fertilizer applications to increase grain yield through minimizing yield variation in grain maize fields. In addition, soil and plant N, P and K analyses provided some information on genotype x environment interaction effect.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan untuk ijazah Doctor Falsafah.

PRESTASI DAN KESTABILAN GENOTIP JAGUNG BIJIAN DI SEMENANJUNG MALAYSIA

Oleh

THAN DA MIN

Mac 2004

Pengerusi : Professor Ghizan Saleh, Ph. D.

Fakulti : Pertanian

Dalam program pembiakbakaan tumbuhan, genotip-genotip yang berpotensi biasanya dinilai di pelbagai persekitaran (lokasi dan tahun) sebelum genotip yang diingini dipilih. Interaksi genotip x persekitaran (G x E) berkait rapat dengan perbezaan prestasi bahan yang dikaji di pelbagai lokasi dan tahun, dan ianya mempengaruhi pemilihan dan pengesyoran kultivar. Genotip yang mempunyai kestabilan yang tinggi adalah diingini. Tambahan pula, perbezaan kawasan atas sifat-sifat tanah dan hasil tanaman merupakan salah satu objektif utama dalan penelitian berkaitan dengan pengeluaran tanaman. Prestasi dan kestabilan genotip jagung bijian (*Zea mays* L.) telah dinilaikan di empat lokasi di Semenanjung Malaysia, iaitu Padang Rengas (Perak), Rhu Tapai (Terengganu), Sungai Udang (Melaka) dan UPM, Serdang (Selangor), selama dua tahun.

Objektif kajian ini adalah (1) untuk menentukan prestasi 14 genotip jagung bijian bagi hasil bijian dan komponen hasil di empat lokasi selama dua tahun, (2) untuk menilai kesan interaksi genotip dan persekitaran (G x E), (3) untuk menentukan genotip berhasil tinggi di setiap lokasi serta kestabilannya dengan menggunakan beberapa parameter kestabilan, (4) untuk menilai perbezaan kawasan dalam kandungan N, P dan K tanah serta pokok, dan pengaruhnya terhadap

hasil bijian, dan (5) untuk mengkaji perhubungan di antara hasil bijian dan pembolehubah nutrien dalam tanah dan pokok.

Eksperimen di lokasi-lokasi tersebut disusun mengikut rekabentuk blok berawak penuh (RCBD) dengan empat replikasi. Amalan agronomi yang disyorkan telah digunakan di setiap lokasi. Penilaian dijalankan mulai Jun 2000 hingga Mac 2002. Kesan genotip dan interaksi G x E adalah sangat bererti, menunjukkan variasi yang tinggi di kalangan genotip, dan genotip memberikan respon yang berbeza di persekitaran yang berlainan. Di kalangan 14 genotip yang dinilai, GxA, Selected GxA, SC-2, Putra J-58 dan TWC-4 menunjukkan prestasi yang tinggi dan mempunyai potensi yang baik untuk digunakan sebagai populasi sumber bagi program pembiakan di masa depan. Melalui perbandingan prestasi genotip bagi hasil bijian dan komponen-komponen hasil, Selected GxA didapati memperolehi hasil bijian (5726 kg ha⁻¹), peratus peleraian (84.9 %), berat 100-biji (25.5 g) dan berat tongkol sepokok (149.5 g) vang tertinggi, berbunga lebih awal (50.6 hari pentaselan dan 53.2 hari perambutan) dan memperolehi tongkol terpanjang (15.5 cm). TWC-2 didapati matang paling awal. SC-3 menunjukkan pokok-pokok yang terendah, manakala pokok-pokok dari Suwan 1 adalah yang tertinggi dan matang lewat. Garispusat tongkol paling besar dilihat pada SC-1. Terengganu dalam tahun 2000 merupakan persekitaran terbaik, sebagaimana ditunjukkan oleh indeks persekitarannya vang tertinggi.

Beberapa kaedah analisis kestabilan yang berbeza telah digunakan, yang meliputi perbandingan nilai min, pekali regresi (b_i), sisihan dari regresi (s²_d), pekali penentuan (R²), varians persekitaran (s²), ekovalen Wricke (W_i), varians kestabilan Shukla (σ^2_i) dan penghimpunan genotip melibatkan pekali variasi (CV). Kaedah-kaedah tersebut memperlihatkan kestabilan

genotip secara konsisten. Selected GxA telah dikenalpasti memberikan hasil bijian tertinggi dan paling stabil dalam prestasi, diikuti oleh DC-1, manakala SC-2 adalah genotip yang paling rendah hasilnya, dan paling tidak stabil. Terdapat genotip yang boleh mengubahsuai kepada lokasi tertentu, seperti GxA di Perak, Putra J-58 di Terengganu, dan Selected GxA di Melaka dan Selangor. Kajian ini dapat mengenalpasti dan memberi kemungkinan menghasilkan varieti jagung bijian sintetik yang baru, berhasil tinggi dan stabil, iaitu Selected GxA.

Anggaran kebolehwarisan luas pada genotip adalah sederhana untuk hasil bijian pada tahun penilaian 2001 dan gabungan tahun, dan juga untuk panjang tongkol, garispusat tongkol dan bilangan baris biji setongkol pada setiap tahun dan gabungan tahun. Ini menunjukkan bahawa faktor genetik mempunyai kesan sederhana terhadap pengawalan hasil bijian, panjang tongkol, garispusat tongkol dan bilangan baris bijian setongkol dalam populasi genotip tersebut.

Tambahan kepada penilaian terhadap kestabilan genetik, perbezaan kawasan terhadap hasil bijian dan sifat-sifat kimia dalam daun dan tanah juga dikaji pada keempat-empat lokasi tersebut, di mana corak perbezaan kawasan yang berbeza bagi hasil bijian dan sifat-sifat kimia daun dan tanah dilihat di ladang di semua lokasi. Analisis ini juga menunjukkan bahawa peratus perbezaan dalam hasil bijian adalah berhubungkait dengan kandungan N, P dan K dalam tanah, serta kandungan P dalam daun.

Keputusan juga memperlihatkan keberkesanan pengurusan tanah secara khusus tempat seperti mengurangkan pemberian baja untuk meningkatkan hasil bijian dengan merendahkan variasi hasil dalam ladang jagung bijian. Tambahan pula, analisis N, P dan K dalam tanah dan pokok memberikan maklumat terhadap kesan interaksi genotip x persekitaran.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and thanks to my supervisor, Professor Dr. Ghizan Saleh, Deputy Dean, Faculty of Agriculture, for his excellent supervision, invaluable guidance and constructive ideas throughout the study. My thanks also go to my co-supervisors, Associate Professor Dr. Anuar Abdul Rahim, Department of Land Management, and Associate Professor Dr. Mohd. Ridzwan Halim, Department of Crop Science, for their invaluable guidance, comments and encouragements during the preparation of this thesis. Special thanks go to the chairman of the examination committee, Dr. Mihdzar Abdul Kadir, Department of Agriculture Technology, Faculty of Agriculture and the external examiner, Associate Professor Dr. Mohamad Osman, Department of Environmental Science, Universiti Kebangsaan Malaysia, for their valuable suggestions and comments.

I am certainly grateful to SEAMEO SEARCA, for providing the finance and scholarship. Thanks also go to the Ministry of Agriculture and Irrigation, Government of Myanmar, and Rector Dr. Kyaw Than of Yezin Agricultural University (YAU), Myanmar, for approving and granting me the study leave.

I wish to express my thanks to all the staff members and laboratory technicians of the Department of Crop Science, Department of Land Management and University Research Park, especially Mr. Mohd Shahril, Mrs Maininah Tahir, Mr. Mohd Fuzi, Ms. Norizah and Mr. Asri Ruslan for their technical assistance while conducting my field

and laboratory experiments. I also wish to express my sincere gratitude to Ms. Asiah Binti Arifin and Mr. Sidek from Rhu Tapai, Terengganu, Mr. Osman Abdullah and Mr. Suaini Haron from Sungai Udang, Melaka, and Mr. Othman B. Haji Sidek and Mr. Omar from Padang Rengas, Perak, for providing me access to the facilities, cooperation and unlimited assistance during the conduct of the experiments.

Special thanks also go to my friends and colleagues who have supported me in one way or another towards the completion of the thesis, especially Mr. Khayamuddin Panjaitan, Mr. Eltahir Siddig Ali, Mr. Mandefro Nigussie, Mr. Panca Jarot Santoso, Mr. Arifin Tasrif, Ms. Sumarni, Mr. Soh Cheng Soon and Mr. Lee Seng Cheong.

I am very grateful to my parent, husband, son and sisters for their understanding, moral support, encouragements and patience. Finally, my sincere appreciation also goes to lecturers and staff, and friends from Universiti Putra Malaysia for their direct or indirect contributions to my study.

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRCT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVALS	xi
DECLARATION	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	xxiii

CHAPTER

1. INTRODUCTION	
2. LITERATURE REVIEW	6
2.1 Cultivation of Maize	6
2.1.1 Climatic Requirements	6
2.1.2 Soil Requirements	6
2.1.3 Plant Population	7
2.1.4 Weed Control	7
2.1.5 Mounting	7
2.1.6 Irrigation	8
2.1.7 Nutritional Requirements	8
2.1.8 Harvesting and Threshing	9
2.2 Maize Cultivation in Asia	9
2.3 Maize Cultivation in Malaysia	9
2.4 Maize Breeding	10
2.5 Hybrid Maize Varieties	10
2.5.1 Definition and History	10
2.5.2 Development of Hybrid Varieties	12
2.5.3 Single Cross Hybrid	13
2.5.4 Three-Way Cross Hybrid	14
2.5.5 Double Cross Hybrid	14
2.6 Synthetic Maize Varieties	14
2.7 Composite Maize Varieties	15
2.8 Maize Breeding in Malaysia	15
2.9 Genotype x Environment Interaction	17
2.10 Yield Stability and Adaptability	18
2.11 Heritability	21
2.12 Factors Influencing Yield	22
2.12.1 Yield Components	22
2.12.2 Factors Limiting Yield	23
2.13 Analysis of Adaptability, Stability, and Productivity	27
2.13.1 Environmental Index (E _i)	27
2.13.2 Regression Coefficient (b_i) and Deviation from Regression (s_d^2)	28
2 13 3 Coefficient of Determination (\mathbb{R}^2)	28

2.13.3 Coefficient of Determination (R^2)

2.13.4 Coefficient of Variation (CV)	29
2.13.5 Genotype x Environment Interaction Study in Malaysia	29
2.14 Soil Spatial Variability	31
2.14.1 The Magnitude of Soil Spatial Variability	31
2.14.2 Techniques for Mapping Soil Spatial Variability	32
2.14.3 Grid Sampling	32
2.14.4 Semivariance and Variogram	33
2.14.5 Kriging	35
2.15 Geographical Information System (GIS)	36
2.16 Soil Testing and Fertility Considerations	37
2.17 Plant Tissue Analysis	38
3. MATERIALS AND METHODS	40
3.1 Locations	40
3.2 Plant Materials	41
3.3 Experimental Layout and Cultural Practices	41
3.4 Data Collection and Sampling	44
3.5 Statistical Analyses	46
3.5.1 Analysis of Variance (ANOVA) at Each Location	46
3.5.2 Correlations Among Characters	47
3.6 Test for Homogeneity of Error Variances	47
3.7 Combined Analyses of Variance Across Environments	48
3.8 Broad-sense Heritability (h_B^2)	51
3.9 Methods of Stability Analysis	53
3.9.1 Comparison of Mean Values	54
3.9.2 Regression Coefficient (b_i) and Deviation from Regression (s_d^2)	54
3.9.3 Coefficient of Determination (R^2)	57
3.9.4 Stability Variance (s ²)	57
3.9.5 Wricke's Ecovalence (W _i)	58
3.9.6 Shukla's Stability Variances (σ_i^2)	59
3.9.7 Genotype Grouping Techniques	59
3.10 Soil Spatial Variability	60
3.10.1 Plant Sampling and Analysis of Soil Spatial Variability	60
3.10.2 Soil Sampling and Analysis	60
3.10.3 Statistical Approach to Predict Response on Grain Yield	60
3.10.4 Geostatistical Analysis	61
4. RESULTS	62
4.1 Analyses of Variance	62
4.1.1 In Perak, 2000	62
4.1.2 In Terengganu, 2000	71
4.1.3 In Melaka, 2000	71
4.1.4 In Selangor, 2000	72
4.1.5 In Perak, 2001	72
4.1.6 In Terengganu, 2001	73
4.1.7 In Melaka, 2001	73
4.1.8 In Selangor, 2001	74
4.2 Test for Homogeneity of Error Variances	74
4.3 Combined Analyses of Variance	78

4.3.1 Combined ANOVA for Year 2000	78
4.3.2 Combined ANOVA for Year 2001	78
4.3.3 Combined ANOVA for All Environments (Years Combined)	82
4.4 Performance of Genotypes	82
4.4.1 Grain Yield	82
4.4.2 Shelling Percentage	87
4.4.3 100-Grain Weight	90
4.4.4 Days to Tasseling	94
4.4.5 Days to Silking	97
4.4.6 Days to Maturity	100
4.4.7 Plant Height	103
4.4.8 Ear Height	106
4.4.9 Ear Weight per Plant	109
4.4.10 Grain Weight per Plant	112
4.4.11 Ear Length	115
4.4.12 Ear Diameter	118
4.4.13 Number of Kernel Rows per Ear	121
4.4.14 Number of Kernels per Row	124
4.4.15 Harvest Index	128
4.5 Grain Yield Comparison Among Genotype Groups	130
4.6 Correlation Among Grain Yield and Yield Components	130
4.7 Broad-sense Heritability (h ² _B)	136
4.8 Stability of Grain Maize Genotypes over Locations and Years	138
4.8.1 Combined Analysis of Variance and Regression	138
4.8.2 Stability of Genotypes	140
4.8.2.1 Grain Yield	148
4.8.2.2 Shelling Percentage	150
4.8.2.3 Ear Weight per Plant	151
4.8.2.4 Grain Weight per Plant	153
4.8.2.5 Ear Length	154
4.8.2.6 Number of Kernel Rows per Ear	155
4.8.2.7 Harvest Index	157
4.9 Spatial Variability for Grain Maize Yield, and Leaf and Soil N, P and K	
Contents ·	159
5 DISCUSSION	167
5. DISCUSSION 5.1 Analysis of Variance and Performance of Genotypes	167
5.2 Correlations Among Grain Yield and Yield Components	107
5.3 Broad-sense Heritability	175
5.4 Stability for Genotypes	170
5.5 Spatial Variability for Grain Yield, Leaf and Soil N, P and K Contents	187
5.5 Spatial Variability for Grant Field, Lear and Son W, F and R Contents	107
6. CONCLUSION	193
BIBLIOGRAPHY	197
APPENDICES	214
BIODATA OF THE AUTHOR	232

.

LIST OF TABLES

Table		Page
2.1	Interpretation of total nitrogen, phosphorus and potassium soil test values.	38
2.2	Sufficiency levels of nutrients (N, K and K) for maize (Plank, 2001).	39
3.1	Fourteen grain maize genotypes evaluated in the study and their pedigrees.	42
3.2	The analysis of variance key out to test the effects of genotypes and replications in the experiment at each location.	46
3.3	Analysis of variance involving a mixed model* for g genotypes at e environments with r replications at each environment (Gomez and Gomez, 1984).	48
3.4	Key out for the combined analysis of variance involving a mixed model* for g genotypes evaluated in trials with r replications at l locations over y years (Cochran and Cox, 1957).	49
3.5	Analysis of variance used for estimation of stability parameters.	56
4.1	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Perak, 2000.	63
4.2	Mean squares in ANOVA for characters measured on 10 plant samples from each of 14 grain maize genotypes evaluated in Perak, 2000.	63
4.3	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Terengganu, 2000.	64
4.4	Mean squares in ANOVA for characters measured on 10 plant samples from each of 14 grain maize genotypes evaluated in Terengganu, 2000.	64
4.5	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Melaka, 2000.	65
4.6	Mean squares in ANOVA for characters measured on 10 plant samples from each of 14 grain maize genotypes evaluated in Melaka, 2000.	65
4.7	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Selangor, 2000.	66

4.8	Mean squares in ANOVA for characters measured on 10 plants samples from each of 14 grain maize genotypes evaluated in Selangor, 2000.	66
4.9	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Perak, 2001.	67
4.10	Mean squares in ANOVA for characters measured on 10 plant samples from each of 14 grain maize genotypes evaluated in Perak, 2001.	67
4.11	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Terengganu, 2001.	68
4.12	Mean squares in ANOVA for characters measured on 10 plant samples from each of 14 grain maize genotypes evaluated in Terengganu, 2001.	68
4.13	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Melaka, 2001.	69
4.14	Mean squares in ANOVA for characters measured on 10 plant samples from each of 14 grain maize genotypes evaluated in Melaka, 2001.	69
4.15	Mean squares in ANOVA for characters measured on 14 grain maize genotypes evaluated in Selangor, 2001.	70
4.16	Mean squares in ANOVA for characters measured on 10 plant samples from each of 14 grain maize genotypes evaluated in Selangor, 2001.	70
4.17	Results of test for homogeneity of error variance from the ANOVA on performance of grain maize genotypes in year 2000.	75
4.18	Results of test for homogeneity of error variance from the ANOVA on performance of grain maize genotypes in year 2001.	76
4.19	Results of test for homogeneity of error variance from the ANOVA on performance of grain maize genotypes over eight environments (four locations in two years, 2000 and 2001).	77
4.20	Mean squares in combined ANOVA for characters measured on 14 grain maize genotypes evaluated at four locations in year 2000.	79
4.21	Mean squares in combined ANOVA for characters measured on 14 grain maize genotypes evaluated at four locations in year 2001.	80

4.22	Mean squares in combined ANOVA for characters measured on 14 grain maize genotypes evaluated in eight environments (four locations in two years 2000 and 2001).	83
4.23	Mean values for grain yield (kg ha ⁻¹) measured on 14 genotypes of grain maize at four locations in two years.	84
4.24	Mean values for the shelling percentage measured on 14 genotypes of grain maize at four locations in two years.	88
4.25	Mean values for the 100-grain weight (g) measured on 14 genotypes of grain maize at four locations in two years.	91
4.26	Mean values for the days to tasseling (days) measured on 14 genotypes of grain maize at four locations in two years.	95
4.27	Mean values for the days to silking (days) measured on 14 genotypes of grain maize at four locations in two years.	98
4.28	Mean values for the days to maturity (days) measured on 14 genotypes of grain maize at four locations in two years.	101
4.29	Mean values for the plant height (cm) measured on 14 genotypes of grain maize at four locations in two years.	104
4.30	Mean values for the ear height (cm) measured on 14 genotypes of grain maize at four locations in two years.	107
4.31	Mean values for the ear weight per plant (g) measured on 14 genotypes of grain maize at four locations in two years.	110
4.32	Mean values for the grain weight per plant (g) measured on 14 genotypes of grain maize at four locations in two years.	113
4.33	Mean values for the ear length (cm) measured on 14 genotypes of grain maize at four locations in two years.	116
4.34	Mean values for the ear diameter (mm) measured on 14 genotypes of grain maize at four locations in two years.	119
4.35	Mean values for the number of kernel rows per ear measured on 14 genotypes of grain maize at four locations in two years.	122
4.36	Mean values for the number of kernels per ear row measured on 14 genotypes of grain maize at four locations in two years.	125
4.37	Mean values for harvest index (%) measured on 14 genotypes of grain maize at four locations in 2001.	129

4.38	Analysis of variance for contrasts among groups involving 14 grain maize genotypes for grain yield per hectare.	130
4.39	Simple correlation coefficients among characters measured on 14 grain maize genotypes evaluated at four locations over two years.	131
4.40	Simple correlation coefficients among characters measured on 14 grain maize genotypes evaluated at four locations in year 2001.	134
4.41	Genotypic variances (σ_G^2), phenotypic variances (σ_P^2) and broad- sense heritability estimates (h_B^2) for grain yield and other characters measured on 14 grain maize genotypes average over four locations in 2000, 2001 and years combined.	137
4.42	Mean squares in combined ANOVA for characters measured on 14 grain maize genotypes evaluated at four locations in two years.	139
4.43	Mean squares in combined ANOVA with regression analysis for characters measured on 14 grain maize genotypes evaluated in eight environments (four locations in two years, 2000 and 2001).	141
4.44	Stability parameters for grain yield of grain maize genotypes evaluated at four locations in two years.	142
4.45	Stability parameters for shelling percentage of grain maize genotypes evaluated at four locations in two years.	143
4.46	Stability parameters for ear weight per plant of grain maize genotypes evaluated at four locations in two years.	144
4.47	Stability parameters for grain weight per plant of grain maize genotypes evaluated at four locations over two years.	145
4.48	Stability parameters for ear length of grain maize genotypes evaluated at four locations in two years.	. 146
4.49	Stability parameters for number of kernel rows per ear of grain maize genotypes evaluated at four locations in two years.	147
4.50	Stability parameters for harvest index of grain maize genotypes evaluated at four locations in year 2001.	158
4.51	Descriptive statistics for grain yield, and leaf and soil N, P and K contents at each of the four locations.	160
4.52	Semivariance parameters for grain yield, leaf N, P and K, and soil N, P and K contents, at each of the four locations.	163
4.53	Pearson's correlation coefficients among grain yield, and soil and leaf nutrient contents measured at each of the four locations.	165

Appendix A.1	Effects of genotypes on various plant characters at different locations and in different years.	216
Appendix A.2	Genotypes listed as highest, intermediate and lowest for yield and yield components for each location, year, locations combined, years combined and all environments combined.	217

LIST OF FIGURES

Figure		Page
2.1	A semivariogram (spherical) showing nugget, range and sill.	34
Appendix B.1	Locations of experimental sites in Peninsular Malaysia.	222
Appendix B.2	Mean monthly minimum and maximum temperatures (°C) of experimental sites over 10 years (1987 to 1996).	223
Appendix B.3	Mean monthly rainfall (mm) of experimental sites over 30 years (1967 to 1996).	223
Appendix C.1	Spatial distribution of grain yield (kg ha ⁻¹) at each location.	225
Appendix C.2	Spatial distribution of leaf N ($g k g^{-1}$) at each location.	226
Appendix C.3	Spatial distribution of leaf P $(g kg^{-1})$ at each location.	227
Appendix C.4	Spatial distribution of leaf K (g kg ⁻¹) at each location.	228
Appendix C.5	Spatial distribution of soil total N $(g kg^{-1})$ at each Location.	229
Appendix C.6	Spatial distribution of soil available P (ppm) at each Location.	230
Appendix C.7	Spatial distribution of soil available K (cmol $(+)$ kg ⁻¹) at each location.	231

.

.

LIST OF ABBREVIATIONS

FAO	Food and Agriculture Organization
CIMMYT	International Maize and Wheat Improvement Center
UPM	Universiti Putra Malaysia
MARDI	Malaysia Agricultural Research and Development Institute
b _i	Regression coefficient
s ² d	Deviation from regression
s ²	Environmental variance
h_{B}^{2}	Broad-sense heritability
R ²	Coefficient of determination
Wi	Ecovalence
σ_{i}^{2}	Stability variance
Ei	Environmental index
CV	Coefficient of variation
Σ	Summation ·
χ^2	Chi-square
GIS	Geographic Information System

xxiii

CHAPTER 1

INTRODUCTION

Maize (Zea mays L.) is a well-known cereal throughout the world. It is an annual, monoecious grass, grown mainly for food, feed and industrial raw materials. It is also an important source of raw materials for extraction of oil, sugar, syrups, starch and other products (Dowswell *et al.*, 1996).

Maize, with its large number of cultivars of different maturity periods can be grown over a wide range of environmental conditions. It is known for its versatile nature and tremendous genetic variability, enabling it to grow successfully throughout the world. In Asia, maize is grown in various environmental conditions, from tropical lowlands at sea level to high elevations in the Himalaya region, and from latitudes of 45° N to 20° S (De Leon and Paroda, 1993).

According to the Food and Agriculture Organization (FAO, 2001), the world's maize productions were 600 million tons, where 39% were from the United States, amounting to 235 million metric tons, 18% from the Peoples Republic of China, with 110 million metric tons, 13% from Brazil, Argentina and Mexico, with 76 million metric tons, while other key areas of production include the Europian Union, India, Indonesia, Canada and South Africa (John, 2001).

In Malaysia, grain maize is grown as a minor crop produced for livestock feed. Grain maize and sweet corn are grown on 21,000 hectares of land, with a total

