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Jacket structures are the most commonly used type of offshore structure in the world 

for oil and gas development. This thesis is concerned with the static response of a 

typical jacket structure subjected to wave and current forces using an innovative 

physical model of the soil-foundation-structure system. The motivation is to 

demonstrate the applicability of using a coupled finite-infinite element formulation to 

represent the far field media of the soil for offshore structural analysis. 

Techniques to represent the environmental load and the physical model for static 

analyses of fixed slender offshore structures are reviewed. Based on the techniques 

suitable for engineering purposes, a computer code for calculating wave and current 

forces is written and its implementation into an existing multi-element finite element 

programme is outlined. For comparison purposes, the developed programmes are 

checked against a commercial software package through several model tests. 



The range and versatility of the coupled programme is demonstrated through 

structural analyses of a typical jacket structure. The effects of different wave 

parameters, load combinations and a comparison of structural response assuming i) 

fixity at the base and ii) flexibility of elastic foundations are studied in detail with 

respect to displacements, axial forces and bending moments. The advantages and 

potential of using a coupled finite-infinite formulation for physical representation of 

the soil for offshore structural analysis are also pointed out and discussed. 
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Struktur jaket adalah struktur yang paling biasa digunakan untuk pembangunan luar 

pantai. Tesis ini adalah berkenaan dengan reaksi statik sebuah struktur jaket tipikal 

yang terdedah kepada daya ombak dan arus dengan menggunakan model fizikal 

tanah-asas-struktur yang inovatif. Dorongannya adalah untuk menunjukkan 

keterterapan menggunakan pasangan forrnulasi unsur terhingga-tak terhingga untuk 

mewakili media jauh tanah kepada analisa struktur luar pantai. 

Kaedah-kaedah untuk mewakili beban persekitaran untuk analisa statik serta cara- 

cara untuk memodelkan system struktur luar pantai jenis teguh telah 

dipertimbangkan semula. Berdasarkan kaedah-kaedah yang sesuai untuk kegunaan 

kejwuteraan, sebuah aturcara komputer untuk mengira daya ombak dan arus telah 

ditulis. Percantumannya ke dalam sebuah aturcara unsur terhingga-pelbagai juga 

telah dijelaskan. Untuk tujuan perbandingan, atwcara-aturcara yang dibangunkan ini 

telah diperiksa ketepatannya dengan sebuah pakej aturcara komersil. 
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Kebolehan serta julat aturcara yang dicantwnkan itu telah ditunjukkan melalui 

analisa sebuah struktur jaket yang tipikal. Kesan-kesan parameter ombak, kombinasi 

beban serta perbandingan respons struktur dengan andaian i) kaki struktur adalah 

teguh ditapaknya dan ii) kefleksibelan asas diambilkira, telah dikaji dengan teliti dari 

segi pesongan, daya paksi serta momen lentur. Faedah serta potensi menggunakan 

pasangan forrnulasi unsur terhingga-tak terhingga bagi mewakili media tanah untuk 

analisa struktur luar pantai juga telah ditunjukkan dan dibincangkan. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Offshore technology has experienced a remarkable growth since the late 1940's, 

when offshore drilling was first used in the Gulf of Mexico. At the present time, a 

wide variety of offshore structures are being used, even under severe environmental 

conditions. These are primarily related to oil and gas recovery, but they are also used 

in other applications such as in harbour engineering and accommodation facilities 

(Reddy et al., 1991a). Difficulties in design and construction are considerable, 

particularly as structures are being located in ever increasing depths and are 

subjected to extremely hostile environmental conditions. 

Offshore structures are quite different than those found onshore on account of sitting, 

size, forces acting on them and the nature of their foundations. The depth of water, 

foundation characteristics, and the nature and the size of the equipment to be 

installed on the platform deck determine the type, size and dimensions of the 

structure to be constructed. The components that make up any offshore structure 

could be classified as (Reddy et al., 1991 a): 

1) Superstructure - Houses the deck and functional equipment such as drilling 

equipment, processing plant, helicopter pad, personnel quarters etc. 

2) Substructure - Supports the working space and transmits the load from the 

working space to the supporting foundation. 



3) Foundation - Supports the sub and superstructure and transmits the load to 

the soil and hard rock beneath. 

1.2 Classes of offshore structures 

Before proceeding to describe the content of this thesis, it is appropriate to classify 

briefly, the wide variety of offshore structures that are in current use. The major 

offshore structures used in the various stages of oil recovery include mobile and 

fixed drilling platforms, as well as a variety of supply, work and support vessels 

(Sarpkaya et al., 1981). Ships and ship like marine vessels are also used extensively, 

but they are treated within the field of naval architecture and are not of primary 

concern in the present study. 

1.2.1 Jack-up units 

Jack-up units are mobile exploratory drilling rigs, usually for drilling oil and gas 

wells in water depths up to about 100 m (Ngo-Tran, 1996). A jack-up rig usually 

comprises of three legs that can be moved up or down as shown in Figure 1 .l. The 

rig is floated to the well site with its legs elevated and when it reaches the site, the 

legs are lowered and jacked into the sea bottom to produce a foundation. A process 

of preloading is then started with water being pumped into ballast tanks in the hull, 

forcing the footings to penetrate deeper into the seabed. Once the ballast tanks are 

emptied, the hull is jacked to its operational elevation. 



Figure 1.1: A typical three-legged jack-up rig (after Martin, 1994) 

1.2.2 Jacket platforms 

The jacket or template structure and extensions to them are the most common 

platforms in use (Sarpkaya et al., 1981). Jacket platforms are employed to meet the 

needs of offshore drilling and production operations. A typical jacket platform 

comprises of a space frame structure, with pipe piles driven through its legs. The 

superstructure or "topside" loads are directly taken by the piles and transferred to the 

soil. These piles must also be able to resist tension as the hydrodynamic forces on the 

structure have a tendency to cause overturning (Dawson, 1983). 

Some jacket platforms may contain enlarged legs to provide for self-buoyancy during 

installation. Figure 1.2 shows a diagram of such a platform. These structures are 



typically built for water depths of 150 to 250 m. One of the world's tallest jacket 

platforms is the Bullwinkle platform, situated at the Gulf of Mexico in water depth of 

492 m (Barltrop et al., 1991). 

Figure 1.2: A typical jacket-type platform (after Patel, 1989) 

1.2.3 Gravity platforms 

Gravity platforms depend on their massive weight, rather than on piles, for their 

stability. They are thus suitable to sites with over-consolidated soils 

(Sarpkaya et al., 1981). Gravity platforms are usually constructed from concrete, 

although steel or combinations of both steel and concrete have also been used. The 

most familiar gravity platforms are comprised of a large base, which has the capacity 

for significant oil storage, and which supports a few columns as illustrated in Figure 

1.3. A typical gravity platform may have a base diameter of 90 to 120 m, and have 
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the capacity to store 1 million barrels of oil. .Gravity structures can weigh over 

850,000 tones and have been placed in water depths varying from 70 to 350 m 

(Reddy et al., 1991a). 

Stat f jo rd  0 
Concrete Crav~ty-Base Platform 

(Norway t 

Sea flew 1S4m 

Figure 1.3: A typical concrete gravity platform (after Ngo-Tran, 1996) 

1.2.4 Tension leg platforms 

As offshore development moved beyond 300 m water depths, newer concepts for 

deep-water platform have evolved. Tension leg platforms, articulated towers and 

Guyed towers emerged as s'tructures suitable for large water depths. All these 

structures are compliant, which is they move slightly with the waves instead of being 

rigid with respect to the wave forces. The tension leg platform (TLP) concept is a 

development of the semi submersible concept, in which heave, pitch, and roll 



responses are virtually eliminated while the platform is fairly free to move in the 

horizontal plane. TLPs could be anchored by a gravity base, driven piles or drilled 

and grouted piles. TLPs have been designed for water depths varying from 150 to 

1500 m (Rajabi et al., 1985). 

Figure 1.4: Hutton tension leg platform (after Rajabi et al., 1985) 

1.3 Offshore structures in Malaysia 

Malaysia's oil gas deposits are situated mainly offshore the states of Sabah and 

Sarawak (East Malaysia) and offshore the east coast of Peninsula Malaysia. 

Petroleum exploration of offshore Malaysia began in the 1950s with the introduction 


