UNIVERSITI PUTRA MALAYSIA

ANALYSIS AND FABRICATION OF FUSED FIBER OPTIC COUPLERS FOR COMMUNICATION SYSTEMS

AHMAD ZAKI BIN HAJI SHAARI.

FK 2006 47
ANALYSIS AND FABRICATION OF FUSED FIBER OPTIC COUPLERS
FOR COMMUNICATION SYSTEMS

AHMAD ZAKI BIN HAJI SHAARI

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2006
ANALYSIS AND FABRICATION OF FUSED FIBER OPTIC COUPLERS FOR COMMUNICATION SYSTEMS

By

AHMAD ZAKI BIN HAJI SHAARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

April 2006
DEDICATION

In the name of Allah, Most Gracious and Most Merciful

For the sake of seeking knowledge
Optical couplers such as fused optical fiber coupler are widely used in the network communication systems as either splitters or combiners. There are not much of theories available to describe the core and cladding interaction model inside fused coupler’s region. In this study, suitable Models for analysis of core to cladding guidance interaction using BPM_CAD simulation are created. While core guidance occurs in between core ratios 1 to 0.65, cladding guidance does support propagation at certain core ratio lower than 0.65 with slightly different results between various Models. The Models are also able to generate low excess losses in both the simulated core guidance and cladding guidance.

Excess loss in real fused couplers depends on their elongations, which can be controlled through certain set-up parameters such as torch head positions and motor speed. The effects of changing hydrogen flowrate and
torch head positions do not have direct relationship with the insertion loss of WDM coupler, hence scientifically, the conclusion of fusion temperature effect on coupling cannot be made. Some design parameters are found out to confirm quite well with the parameters found from fabrication. This has been demonstrated through theoretical pulling signatures for various fused couplers.

Besides examining 1 x 2 fused couplers, the study on triangular shape arrangement of 1 x 3 monolithic star couplers do indicate that equal couplings in all output ports are possible if correct Intertwined Method of twisting fibers is used. The same technology used in fabricating fused coupler, is used to fabricate lattice filter, which has channel spacing 2.84 nm or 178 GHz. Generally, all the studies are carried out at most levels including theory, simulation and experiment. These findings or data are analyzed to show the relationship between them and they are also discussed in details in this thesis.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ANALISA DAN FABRIKASI PENGGANDING GENTIAN OPTIK TERLAKUR UNTUK SISTEM KOMUNIKASI

Oleh

AHMAD ZAKI BIN HAJI SHARRI

April 2006

Pengerusi: Profesor Madya Mohd Adzir Mahdi, PhD

Fakulti: Kejuruteraan

Pengganding optik, seperti pengganding gentian optik terlakur, telah digunakan secara meluas didalam sistem komunikasi rangkaian sebagai pembahagi atau penggabung. Tidak terdapat banyak kajian teori dilakukan mengenai model interaksi pergerakan terurus teras ke cladding didalam pengganding terlakur. Dalam kajian ini, model-model tertentu telah dicipta untuk analisa interaksi pergerakan terurus teras ke cladding dengan menggunakan perisian simulasi BPM_CAD. Didapati, pergerakan terurus cladding memang berlaku pada model tertentu jika nisbah diameter teras kurang dari 0.65 manakala pergerakan terurus teras berlaku pada nisbah diameter teras diantara 1 dan 0.65. Walaupun begitu, terdapat sedikit ketidaksamaan diantara model-model tersebut. Model-model juga berjaya menghasilkan lesapan lebihan yang kecil bagi kedua-dua simulasi pergerakan terurus teras dan cladding.

Selain kajian keatas pengganding terlakur 1 x 2, kajian juga dilakukan keatas pengganding terlakur 1 x 3 berbentuk susunan tigasegi yang boleh mengeluarkan kuasa penggandingan sama diantara ketiga-tiga arah keluaran ports jika Cara Intertwined yang betul diguna pakai bila melilitkan gentian-gentian optik berkenaan. Kajian keatas Lattice Filter juga dibuat dengan menggunakan teknologi yang sama untuk pembuatan pengganding terlakur tersebut. Didapati Lattice Filter berkenaan mempunyai ruangan saluran sebanyak 2.84 nm. Secara amnya, semua kajian yang dijalankan melibatkan teori, simulasi dan uji kaji. Kesemua penemuan atau data dianalisa untuk mencari perhubungan diantara kesemua parameter-parameter berkenaan dan dibincang secara menyeluruh didalam tesis ini.
I would like to express my appreciation and deep gratitude to my supervisor
Associate Professor Mohd Adzir Mahdi and my co-supervisor Associate
Professor Mohd Khazani Abdullah for supporting this works and their
guidance and patience towards completion of this research work. My
special thanks to Professor Sahbudin Shaari, for guidance and advice and
Professor Burhanuddin Yeop Majlis, Professor Harith Ahmad, Associate
Professor Ibrahim Ahmad and Associate Professor Kaharudin Dimyati who
are indirectly related to this study.

My special thanks are also to all my colleagues and staffs from IMEN,
Photonics Laboratories UPM, SIRIM and Uniten who know me.

Thanks you very much to my wife for your support and understanding. And
to my two children (Ismail and Hanisah Safiah) who I love so much. My
indebtedness is to all family members especially my beloved mother,
brothers and sisters.
I certify that an Examination Committee has met on 20 April 2006 to conduct the final examination of Ahmad Zaki Bin Haji Shaari on his Master of Science thesis entitled “Analysis and Fabrication of Fused Fiber Optic Couplers for Communication Systems” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Borhanuddin Mohd Ali, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Syed Javaid Iqbal, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Khairi Yusuf, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Harith Ahmad, PhD
Professor
Faculty of Science
Universiti Malaya
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
11 JUL 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohd Adzir Mahdi, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohamad Khazani Abdullah, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 AUG 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not previously or concurrently submitted for any other degree at UPM or other institutions.

AHMAD ZAKI BIN HAJI SHAARI

Date: 1/3/2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF NOTATION</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Brief History of Optical Couplers
 1.2 Optical Coupler Technology
 1.3 Fused Optical Fiber Coupler and Their Classifications
 1.3.1 Coupler and Splitter
 1.3.2 Wavelength Selective Coupler (WS)
 1.3.3 Monolithic Star or Tree Coupler
 1.3.4 Fused Circular-Tapered Coupler (FCT)
 1.4 Applications of Couplers
 1.4.1 WDM Technology
 1.4.2 Interleaver and De-interleaver
 1.4.3 Fiber to the Home
 1.5 Problem Statement
 1.6 Objectives
 1.7 Scope of Work
 1.8 Methodology
 1.9 Thesis Overview

2. **BASIC THEORY AND LITERATURE REVIEW**
 2.1 Basic Concepts of Coupling
 2.1.1 Coupling Mode Theory (CMT)
 2.1.2 Beam Propagation Methods (BPM)
 2.2 Theoretical Design of Fused Coupler
 2.2.1 Propagation inside Tapered Region
 2.2.2 Taper Waist
 2.2.3 Improvement on Coupling Mode Theory
 2.2.4 LP Modes and Mode Transformation
 2.2.5 Adiabaticity
 2.2.6 Delineating Curves
 2.3 Concept of Lattice Filter

xii
2.4 Review
 2.4.1 Monolithic Star Coupler

3. DESIGN AND FABRICATION
 3.1 Designing Couplers using BPM_CAD Simulation
 3.1.1 Designing Models
 3.1.2 Losses in Simulation
 3.2 Description of Equipment
 3.2.1 Coupler Workstation
 3.2.2 Coupler Workstation’s Software
 3.2.3 Polarization Scrambler
 3.3 Fabrication Methods and Basic Parameters
 3.3.1 Basic Fabrication
 3.3.2 Fabrication Star Coupler
 3.3.3 Input and Output Parameters

4. RESULTS AND DISCUSSION
 4.1 BPM_CAD Simulation Results
 4.1.1 Fiber Model
 4.1.2 Coupler Models
 4.1.3 A Review on Simulations
 4.2 Studies on 1 x 2 Fused Coupler
 4.2.1 Setting Torch Head Positions
 4.2.2 Excess Loss due to Different Torch Sizes
 4.2.3 Setting Motor Speed
 4.2.4 Coupling Ratio and Crosstalk
 4.2.5 Controlling and Minimizing Excess Losses
 4.2.6 Insertion Loss Investigation due to Different Hydrogen Flowrate
 4.2.7 Polarization Dependent Loss (PDL) at Small Difference in Hydrogen Flowrate
 4.2.8 Analysis on Design Parameters
 4.2.9 Pulling Signature for Standard Coupler
 4.2.10 Pulling Signature for WDM Coupler
 4.2.11 Pre-pull of Wideband Coupler
 4.3 Studies on Lattice Filter
 4.4 Studies on 1 x 3 Star Coupler
 4.4.1 Studies on Triangular Shape Arrangement
 4.4.2 Coupling between Launched and Non-launched Fibers
 4.4.3 Coupling between Non-launched Fibers

5. CONCLUSIONS AND FURTHER WORK
 5.1 Conclusion
 5.2 Further Work
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>79</td>
</tr>
<tr>
<td>3.4</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>115</td>
</tr>
<tr>
<td>4.3</td>
<td>120</td>
</tr>
<tr>
<td>4.4</td>
<td>133</td>
</tr>
<tr>
<td>B1</td>
<td>144</td>
</tr>
<tr>
<td>B2.1</td>
<td>145</td>
</tr>
<tr>
<td>B2.2</td>
<td>146</td>
</tr>
<tr>
<td>B2.3</td>
<td>147</td>
</tr>
<tr>
<td>B3.1</td>
<td>148</td>
</tr>
<tr>
<td>B3.2</td>
<td>149</td>
</tr>
<tr>
<td>D1.1</td>
<td>152</td>
</tr>
<tr>
<td>D1.2</td>
<td>153</td>
</tr>
<tr>
<td>D1.3</td>
<td>154</td>
</tr>
</tbody>
</table>
D1.4 Data for theoretical design (Z = 3.84 mm to 5.08 mm) 155
D1.5 Data for theoretical design (Z = 5.12 mm to 6.00 mm) 156
D2.1 Data for theoretical design (Z = 5.12 mm to 6.00 mm) of wavelength 1310 nm 157
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Cross-section’s view of FBT coupler [1] taken at an angle (photograph courtesy D.Mortimore, British Telecom Research Laboratories)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Cross-section of FCT coupler before tapering process [2]</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>A 3 dB standard coupler</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>A coupler with complete packaging (A); a coupler covered by heat shrinking tube (B); a coupler with exposed internal view (C)</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>980/1550 WDM coupler</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>(i) 1 x 16 tree coupler using 1 x 2 coupler; (ii) 1 x 16 tree coupler using 1 x 4 monolithic coupler</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>DWDM system [5]</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>A schematic of demultiplexer using de-interleaver [6]</td>
<td>12</td>
</tr>
<tr>
<td>1.9</td>
<td>One-stage lattice filter [8]</td>
<td>12</td>
</tr>
<tr>
<td>1.10</td>
<td>PON, simplified from [11]</td>
<td>14</td>
</tr>
<tr>
<td>1.11</td>
<td>Scope of Work</td>
<td>17</td>
</tr>
<tr>
<td>1.11a</td>
<td>Research Methodology</td>
<td>19</td>
</tr>
<tr>
<td>1.11b</td>
<td>Fabrication method of fused couplers</td>
<td>20</td>
</tr>
<tr>
<td>1.11c</td>
<td>Production step of fused couplers</td>
<td>22</td>
</tr>
<tr>
<td>2.1</td>
<td>The refractive index distribution of the coupled slab waveguides</td>
<td>26</td>
</tr>
</tbody>
</table>
2.2 Power coupled from two waveguides 1 and 2

2.3 A symmetrical taper region of an optical waveguide

2.4 A double cored slab waveguide structure with large core separation (6.5 μm) and highly confined fields.

Wavelength is 1.55 μm

2.5 The same structure as in Figure 2.4 but with the separation of the guides reduced to 0.3 μm

2.6 The lowest order TE supermode for a dual core structure having the core refractive index difference = 0.04

2.7 Side view of FBT couplers (top view) showing neck region (V<1) and tapered region (V>1) and cross-section (bottom view) of neck region [31]

2.8 Power inside fused coupler showing cycles in which first peak for 1550 nm occurred when pull length = 16.1 mm or $KZ = \frac{\pi}{2}$

2.9 Normal fused coupler has (10) bandwidth shape while wideband coupler has more (11)(12) flattened shape [49]

2.10 Delineating curves of fibers for 800 nm and 1310 nm wavelengths [13]

2.11 Two-stage lattice filter

2.12 Single-stage and two-stage lattice filters showing free spectral range (FSR) of approximately 400 GHz

2.13 Structure of Passive Devices
2.14 Arrangements for star coupler; (i) linear array 3 x 3, (ii) equilateral 3 x 3, (iii) 4 x 4

2.15 Schematic diagram [34] of twisted 3 x 3 coupler, indicating direction of positive twist θ

2.16 Equal splitter’s spectral response at wavelength 1300 nm [34] for linear array arrangement

3.1 Model structure for simulation

3.2 Schematic fused coupler representing various Regions

3.3 Flowchart showing chosen steps for design and simulation 2 x 2 fused couplers

3.4 Fiber Optic Coupler Manufacturing System

3.5 Coupler Workstation

3.6 Picture showing Torch’s Head and Fiber Chucks

3.7 A polarization scrambler

3.8 A fiber in a planar coil

3.9 Schematic arrangement of equipment

3.10 Coupling cycle

3.11 Schematic arrangement of equipment for 1 x 3 couplers

3.12 Normal sitting arrangement of triangular shape of fibers

3.13 De-multiplexed wavelengths of WDM coupler

3.14 FiberPro Configuration Screen

3.15 FiberPro Manufacturing Screen

3.16 Pulling Signature showing output parameters in real time
4.1 V parameter versus core diameter for various wavelengths
\((\Delta=0.00341) \) 90
4.2 Comparison of small and big core ratios for tapered fiber 91
4.3 Coupling characteristic for core ratio 1 to 0.43 92
4.4 Coupling characteristic for core ratio 0.65 to 0.43 93
4.5 Coupling characteristic for core ratio 0.56 to 0.43 94
4.6 Coupling characteristic for core ratio 0.56 to 0.43 95
4.7 Coupling characteristic for core ratio 0.65 to 0.43 97
4.8 Coupling characteristic for core ratio 0.75 to 0.56 98
4.9 Actual Pulling Signature showing jump in excess loss occurred at end of tapering process 101
4.10 Comparison of two different torch heads 102
4.11 The graph of distance versus runtime for equation
\[s = 111t - 91.41 \] 103
4.12 Set coupling ratio versus actual coupling ratio for 1550 nm wavelength 104
4.13 Achieved coupling ratios at various crosstalk level for 1310/1550 WDM coupler 105
4.14 Relationship in between excess loss and elongation 106
4.15 Insertion loss versus hydrogen flowrate 108
4.16 Polarization dependent loss at small change of hydrogen flowrate 109
4.17 Actual Pulling Signature showing various types of pull length 110
4.18 a) Fiber at time = 0 s, a section PQ of fused length Lo is heated.
 b) The structure of fiber taper representing cross-section view after tapering

4.19 Lengths increase as waist diameter ratio decreases

4.20 Manufacturing Screen for an actual 3 dB coupler

4.21 Theoretical pulling signature which represents standard coupler

4.22 Coupling coefficient increases as tapering process continues

4.23 Actual Pulling Signature showing both power for 1480 nm and 1610 nm wavelengths launched initially at both input ports simultaneously

4.24 Actual Pulling Signature showing both power for 1480 nm and 1550 nm wavelengths launched initially at both input ports simultaneously

4.25 Theoretical pulling signature showing de-multiplexing point

4.26 Comparison of coupling coefficient between identical (b=1) and non-identical fibers’ diameters (b=0.82)

4.27 Theoretical pulling signature for wideband coupler

4.28 Power taken for various couplers with different diameters’ ratios at first coupling cycle

4.29 A 1550 nm LED broadband input signal viewed from Optical Spectrum Analyzer
4.30 Interleaved output signal at first port showing odd wavelengths centred at 1548.5 nm

4.31 Interleaved output signal showing channel spacing = 2.84 nm or FSR = 178 GHz

4.32 Superimposed output signals showing both odd and even wavelengths overlapping each other

4.33 Arrows showing first rotation

4.34 Arrows showing second rotation

4.35 Two possible positions at fusion region for the intertwined twist method

4.36 Arrows showing the opposite rotation for second step of twist

4.37 Two possible worst positions for normal twisting

4.38 Possible position under 420° rotation for truly equilateral arrangement

4.39 Actual Pulling Signature for 1 x 3 star coupler with unequal splitting ratio

4.40 Actual Pulling Signature for 1 x 3 star coupler at wavelength of 1310 nm

4.41 Output power P_1 (red) and output power P_2 (blue) shows unequal powers between them for truly equilateral arrangement

5.1 Recommended modification for Coupler Workstation

C.1 Relationship between power and Volt
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPM</td>
<td>Beam Propagation Method</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CH</td>
<td>Photodetector</td>
</tr>
<tr>
<td>CMT</td>
<td>Coupled Mode Theory</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CR</td>
<td>Coupling Ratio</td>
</tr>
<tr>
<td>CW</td>
<td>Coupler Workstation</td>
</tr>
<tr>
<td>CWDM</td>
<td>Coarse Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>DWDM</td>
<td>Dense Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>EL</td>
<td>Excess Loss</td>
</tr>
<tr>
<td>FBT</td>
<td>Fused Biconical Taper</td>
</tr>
<tr>
<td>FTP</td>
<td>Flame Torch Position</td>
</tr>
<tr>
<td>FTTH</td>
<td>Fiber to the Home</td>
</tr>
<tr>
<td>IL</td>
<td>Insertion Loss</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>LM</td>
<td>Lower Modes</td>
</tr>
<tr>
<td>MFD</td>
<td>Mode Field Diameter</td>
</tr>
<tr>
<td>MZI</td>
<td>Mach Zehnder Interferometer</td>
</tr>
<tr>
<td>OLT</td>
<td>Optical Line Terminal</td>
</tr>
<tr>
<td>ONU</td>
<td>Optical Network Unit</td>
</tr>
<tr>
<td>OSA</td>
<td>Optical Spectrum Analyzer</td>
</tr>
<tr>
<td>PDL</td>
<td>Polarization Dependent Loss</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>PL</td>
<td>Pull Length</td>
</tr>
<tr>
<td>PON</td>
<td>Passive Optical Network</td>
</tr>
<tr>
<td>SMF</td>
<td>Single Mode Fiber</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>WSF</td>
<td>Wavelength Selective Fused</td>
</tr>
</tbody>
</table>