EFFECT OF PALM KERNEL CAKE BASED DIET ON LIBIDO AND SEMEN QUALITY OF MALIN X SANTA-INES LAMBS

ZELEALEM TESFAY GEBRETSADIK.

FP 2004 5
EFFECT OF PALM KERNEL CAKE BASED DIET ON LIBIDO AND SEMEN QUALITY OF MALIN x SANTA-INES LAMBS

By

ZELEALEM TESFAY GEBRETSADIK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Agricultural Science

January 2004
DEDICATION

This thesis is dedicated to the people of ETHIOPIA. I owe my country a great debt.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Agricultural Science

EFFECT OF PALM KERNEL CAKE BASED DIET ON LIBIDO AND SEMEN QUALITY OF MALIN x SANTA-INES LAMBS

By

ZELEALEM TESFAY GEBRETSAK

January 2004

Chairman: Associate Professor Ismail Bin Idris, Ph.D.

Faculty: Agriculture

A study was conducted for six months at the farm of the Department of Animal Science, Universiti Putra Malaysia (UPM), Serdang, Selangor (3° 00’ N, 101° 42’ E) to investigate the effect of palm kernel cake based diet on serving capacity and semen quality of Malin x Santa-Ines crossbred ram lambs. Twenty Malin x Santa-Ines crossbred ram lambs were randomly assigned into three dietary treatments namely (T1) 60% Palm kernel cake + 40% oil palm frond, (T2) 60% Palm kernel cake + 40% oil palm frond supplemented with 23 mg/kg dry matter of molybdenum as ammonium molybdate ((NH₄)₆Mo₇O₂₄.4H₂O) and 600mg/kg dry matter of Sulfur as sodium sulphate (Na₂SO₄) and (T3) control; 60% concentrate of corn-soybean mix + 40% oil
palm frond. There was no significant difference (p>0.05) among the rams for the three dietary treatments for libido or mating behavior. All rams reached their optimum mating behavior (number of ejaculation = 6.7±1.3 and mating efficiency = 0.43±0.01) after the second month of the experiment. It was also found that there was no significant difference (p>0.05) for all the semen quality parameters among the rams under the three dietary treatments. Rams in all dietary treatments produced good semen and their sperm characteristics were within the ranges for good rams (semen volume = 0.7-2.0 ml; sperm concentration =2-5 X 10⁹ cells/ml; sperm motility > 80%; percentage of abnormal morphology <15%).

Although there was a significant difference on the level of copper (Cu) accumulated in the liver (p<0.01) and testis (p<0.05), with highest values in rams under T1 (1089 ± 189 ppm and 0.63 ± 0.18 ppm, respectively), there was no symptom of toxicity observed in the rams. Therefore, it was concluded that PKC has no negative effect on serving capacity and semen quality of Malin x Santa-Ines crossbred sheep, at least for six months of the feeding period. It was also concluded that supplementing 23 mg/kg dry matter of Molybdenum and 600 mg/kg dry matter Sulphur to sheep fed on PKC based diet helps to protect Cu accumulation in the plasma, liver and testis of rams without negative effect on their reproductive capacity and semen quality.
Even though higher serum testosterone was found in rams under diets T1 and T2 compared to T3, this did not reflect the actual reproductive level and sperm quality. Hence, it was concluded that serum testosterone level might not be a good indicator of reproductive performance of rams when blood samples are taken from conscious animals.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Mster Sains Pertanian

KESAN DIET ASAS ISIRONG KELAPA SAWIT KE ATAS LIBIDO DAN KUALITI SEMEN ANAK BIRI-BIRI BAKA KACUKAN MALIN x SANTA-INES

Oleh

ZELEALEM TESFAY GEBRETSADIK

Januari 2004

Pengerusi: Professor Madya Ismail Bin Idris, Ph.D.

Fakulti: Pertanian

Satu Kajian telah dijalankan selama enam bulan di ladang Jabatan Sains Haiwan, Universiti Putra Malaysia (UPM), Serdang, Selangor (3° 00’ Utara, 101° 42’ Timur) untuk menyelidik kesan isirong kelapa sawit (PKC) sebagai diet asas ke atas keupayaan mengawan dan kualiti semen biri-biri baka kacukan Malin x Santa-Ines. Dua puluh ekor biri-biri Malin x Santa-Ines telah ditentukan secara rawak kepada tiga rawatan diet iaitu (T1) 60% PKC + 40% pelet pelepah kelapa sawit, (T2) 60% PKC + 40% pelet pelepah kelapa sawit di suplemen dengan 23 mg/kg berat kering molybdenum sebagai ammonium molybdate (\((\text{NH}_4)_6\text{Mo}_7\text{O}_{24}.4\text{H}_2\text{O}\)) dan 600 mg/kg berat kering sulfur sebagai sodium sulfat.
(Na₂SO₄) dan (T3) kawalan; 60% konsentrat mengandungi campuran jagung-kacang soya + 40% pelet pelepah kelapa sawit. Tiada perbezaan bererti (p>0.05) diantara biri-biri jantan pada ketiga-tiga rawatan diet untuk 'libido' atau kelakuan mengawan. Semua biri-biri jantan mencapai kelakuan mengawan yang optimum (bilangan ejakulasi = 6.7±1.3 dan efisiensi mengawan = 0.43±0.01) selepas dua bulan kajian dijalankan. Tiada perbezaan bererti (p>0.05) juga didapati untuk semua parameter kualiti semen diantara biri-biri jantan untuk ketiga-tiga rawatan diet. Biri-biri jantan dalam semua rawatan diet menghasilkan semen yang berkualiti dan ciri-ciri sperma yang dihasilkan adalah dalam julat untuk biri-biri jantan yang baik (isipadu semen =0.7-0.2 ml; kepekatan sperma = 2-5 X 10⁹ sel/ml; motiliti sperma > 80%; peratusan morfologi sperma abnormal < 15%).

Walau bagaimanapun, terdapat perbezaan bererti pada tahap kuprum terkumpul dalam hati (p <0.01) dan testis (p<0.05), dengan nilai yang tertinggi bagi biri-biri jantan di bawah T1 (1089 ± 189 ppm dan 0.63 ± 0.18, masing-masing), tidak terdapat simpton keracunan pada biri-biri jantan. Oleh yang demikian, dapat dirumuskan bahawa tiada kesan negatif PKC ke atas keupayaan mengawan dan kualiti semen biri-biri jantan baka kacukan Malin x Santa-Ines, sekurang-kurangnya untuk jangkamasa pemakanan selama enam bulan. Ia juga dapat dirumuskan bahawa dengan memberi suplemen 23 mg/kg berat kering molybdenum dan 600 mg/kg berat kering sulfur kepada biri-biri yang diberi PKC sebagai diet asas akan menolong melindungi pengumpulan
Cu di dalam plasma, hati dan testis biri-biri jantan tanpa kesan negatif terhadap keupayaan reproduktif dan kualiti semen.

Walaupun testosteron dalam serum didapati tinggi pada biri-biri jantan di bawah T1 dan T2 berbanding T3 ini tidak menggambarkan tahap reproduktif sebenar dan kualiti sperma. Oleh itu, ia dapat dirumuskan bahawa tahap testosterone dalam serum mungkin merupakan petunjuk yang kurang baik bagi prestasi reproduktif biri-biri jantan apabila sampel darah diambil daripada haiwan yang sedar.
ACKNOWLEDGEMENTS

At most Thanks to Almighty God!

I would like to express my sincere and profound gratitude to my main supervisor, Assoc. Prof. Dr. Ismail Idris, for his invaluable guidance and friendship throughout the course of my study. My deep appreciation is also extended to Assoc. Prof. Dr. Halimatun Yaakub, Assoc. Prof. Dr. Sabrina Sukardi and Assoc. Prof. Dr. Abdul Razak Alimon for their invaluable help and guidance.

My deepest appreciation goes to Dr. Jothi Malar Panandam for her devotion to avail herself to answer questions related to my work and allowing me to use the laboratory facilities. I am also grateful to Assco. Prof. Dr. Abdul Rahman Omar from the Faculty of Veterinary Medicine for his permission to use the lab facilities in the Virology laboratory and for assisting me in the analysis and interpretation of the results of enzyme immuno assay. Thanks are also due to Mr. Jamiuddin Shahudin for assisting me in the animal farm and to Ms. Lai Pui Wah for translating my abstract to “Bahasa Malaysia”. The collaboration, help and encouragement from all Ethiopian students in UPM and fellow students in the Department of Animal Science are acknowledged. Finally I would like to give my sincere gratitude to my father and all my family for their encouragement they offered me.
I certify that an Examination Committee met on 26th January 2004 to conduct the final examination of Zelealem Tesfay Gebretsadik on his Master of Agricultural Science thesis entitled "Effect of Palm Kernel Cake Based Diet on Libido and Semen Quality of Malin X Santa-ines Lambs" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zainal Aznam Mohad Jelan, Ph.D.
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Wahid bin Haron, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Liang Juan Boo, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Hiroyuki Hirooka, Ph.D.
Professor
Graduate School of Agriculture
Kyoto University
Japan
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 MAR 2004
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Agricultural Science. The members of the Supervisory Committee are as follows:

Ismail bin Idris, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Halimatun Yaakub, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Abd Razak bin Alimon, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Sabrina Sukardi, Ph.D.
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 APR 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ZELEALEM TESFAY GEBRETSADIK

Date: 24/10/04
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>II</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>III</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>VI</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IX</td>
</tr>
<tr>
<td>APROVAL</td>
<td>X</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>XII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVI</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>XVII</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>XVIII</td>
</tr>
</tbody>
</table>

CHAPTER

I. INTRODUCTION 1

II. LITERATURE REVIEW 5

TRACE ELEMENTS IN ANIMAL 5
 Importance of Copper 6
 Copper Homeostasis 7
 Copper Imbalance 8
 Sensitivity of Sheep to Copper 9
Factors Affecting the Copper Status in Sheep 10
 Copper in the feed 10
 Animal factor 13
 Stress factors 14
 Source of supplemental copper 14
Copper Antagonism Interactions 15
 Iron antagonism 15
 Zinc antagonism 16
 Molybdenum antagonism 17
 Sulphur antagonism 18
 Thiomolybdate 18
Utilization of Antagonistic Interactions to Prevent Cu Toxicity 19
Copper Toxicity in Malaysia 20
TRACE MINERALS AND REPRODUCTION 21
REPRODUCTIVE HORMONES 21
Factors Affecting Basal Hormone Level 22
 Exposure to ewe 22
 Animal management 22

xiii
SERVING CAPACITY TEST
Factors Affecting Serving Capacity
Genetic factor
Social interaction
Age and experience
Seasonal variation

III. MATERIALS AND METHODS

EXPERIMENTAL SITE

MATERIALS
Experimental Animals
Dietary Treatment
Feeding and Care

METHODS
Familiarization and Training of Rams to Mount and Ejaculate
Serving Capacity Test
Semen Analysis Procedure
Blood Sampling and Analysis
Determination of Cu Levels in the Liver and Testis
Statistical Analysis

IV. RESULTS

SERVING CAPACITY
SEMEN QUALITY
COPPER STATUS
SERUM TESTOSTERONE LEVEL

V. DISCUSSION

SERVING CAPACITY
SEMEN QUALITY
COPPER STATUS
SERUM TESTOSTERONE LEVEL

VI. CONCLUSION

REFERENCE
APPENDICES
BIO DATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean weight of ram lambs at the start of the experiment</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Nutrient content of the dietary treatments</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Sexual performances of rams at the beginning and end of the experiment</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Monthly sexual performance of rams in the three dietary treatments</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Pearson correlation matrix for sexual performance of rams</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Semen quality of rams at the beginning and end of the experiment</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>Monthly semen quality of ram in the three dietary treatment,</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>Pearson correlation matrix for sperm quality parameters</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>Plasma copper level of rams at the beginning and end of the experiment</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>Liver and testis copper level of rams at the end of the experiment</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>Monthly plasma copper level of rams fed on</td>
<td>59</td>
</tr>
<tr>
<td>13</td>
<td>Nutritive value of PKC collected from literatures</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>Chemicals used in wet digestion and their proportion</td>
<td>89</td>
</tr>
<tr>
<td>15</td>
<td>Trend analysis for mating behavior over six months period over all treatments</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>Trend analyses for sperm quality over four months period</td>
<td>90</td>
</tr>
<tr>
<td>17</td>
<td>Proportion of abnormal sperm cells of rams subdivided into parts of sperm cells</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td>Mean monthly body weights of rams over the experimental period</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>Calibration for ElAgen Testosterone Kit</td>
<td>93</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: Determination of sperm concentration 37
Figure 2: Determination of % sperm motility 37
Figure 3: Latency to first mount of rams over experimental period 46
Figure 4: Latency to first ejaculation of rams over experimental period 46
Figure 5: Refractory period of rams over experimental period 47
Figure 6: Number of mount of rams over experimental period 47
Figure 7: Number of ejaculation of rams over experimental period 48
Figure 8: Ram mating efficiency over experimental period 48
Figure 9: Sperm concentration of rams over four months 53
Figure 10: Proportion of abnormal sperm cells of rams over four months 53
Figure 11: Proportion of live sperm cells of rams over four months 54
Figure 12: Volume of ejaculates of rams over four months 54
Figure 13: Proportion of motile sperm cells of rams over four months 55
Figure 14: Serum testosterone profile of rams over experimental period 61
Figure 15: Monthly body weight change of rams 92
Figure 16: An overview of micro plate used for assaying serum testosterone 93
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rams in a raised pen</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Housing and feeding facility of rams</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Ram exhibiting its serving potential in 30 min serving capacity test</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Artificial vagina</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Semen collection using artificial vagina</td>
<td>38</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

The following abbreviations are used in the thesis with or without definition.

ANOVA Analysis of variance
ATP Adenosine triphosphate
Ca Calcium
CONC Concentrate
CRD Completely randomized design
Cu Copper
Cu₂O Cuprous oxide
CV Coefficient of variation
DI Deciliter
DM Dry matter
EIA Enzyme immuno assay
EJA Ejaculations
EMS Error mean squares
Fe Iron
GLM General linear model
H Hour
ICP Inductively coupled plasma
K Potassium
LFE Latency to first ejaculation
LFM Latency to first mount
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>Lutienizing hormone</td>
</tr>
<tr>
<td>MEFF</td>
<td>Mating efficiency</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>Mol</td>
<td>Moles</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>ng</td>
<td>Nano gram</td>
</tr>
<tr>
<td>Nmol/l</td>
<td>Nano mole per liter</td>
</tr>
<tr>
<td>NRC</td>
<td>National research council</td>
</tr>
<tr>
<td>NS</td>
<td>Non significant</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>OPF</td>
<td>Oil palm frond</td>
</tr>
<tr>
<td>p</td>
<td>Probability</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PKC</td>
<td>Palm kernel cake</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>REF</td>
<td>Refractory period</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>S</td>
<td>Sulphur</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical analysis system</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>S-Mo</td>
<td>Sulphur molybdenum complex</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>t test</td>
<td>Students t-test</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The small ruminant production systems in Malaysia can be described as extensive, intensive, semi-intensive and animal tree-crop integration systems (Rajion et al., 1993). Integration of ruminants with tree-crops is the most practical and widely practiced production system by many government and private farms. Integration of small ruminants, specifically sheep, in oil palm plantation has been successful (Rajion et al., 1994), though the herbage under the plantation does not support the animals' maintenance requirement in quantity and quality.

Sheep population in Malaysia has showed an increasing trend for the last 30 years (Appendix A). This is due to their feeding habit, the ease to integrate them with oil palm or rubber plantations and the liberal importation of exotic breed and crossing or upgrading program (Abdullah Sani et al., 1999).

The success of a sheep production enterprise is highly dependent, among others on the ability of rams to breed maximum number of ewes, which is a factor of libido and mating ability of the rams. Reproductive inefficiency in sheep results in reduced dissemination of superior genetic material and lower producer profitability. The existence of a large number of low libido rams in a
flock will have a negative impact on flock productivity and profitability by causing longer lambing interval and creating the need to keep many rams. This problem may be more pronounced in small farm households where it is uneconomical to keep less productive male animals for a long period.

Libido in sheep, as in all other animals, is influenced by factors such as genotype, nutrition, climate, health of animals and farm management practices. Nutritional manipulation/fluctuation, in particular trace elements, has a major influence in libido expression in animals (Martin and White, 1992; Puls, 1994). This can be induced through antagonistic interaction, toxicity and deficiency of the trace elements.

Among the trace elements, copper (Cu) has been reported to have a significant role in influencing the fertility of farm animals, being constituent of many enzymes and hormones (Davis and Mertz, 1987; Linder and Hazegh-Azam, 1996; Underwood and Suttle, 1999). Therefore, it is important to include high Cu feed source in animal rations. Palm kernel cake (PKC), a known by-product of the oil palm industry in Malaysia can be used in this regard as it has high Cu content. Palm kernel cake is a widely used feed supplement in Malaysia with considerable export potential (MPOB, 2002). The production of PKC by palm oil industry in Malaysia is increasing year after year. The production in 2000 was 1.3 million metric tones while that of 2001
was 1.8 million metric tones. The nutrient content of PKC makes it suitable for most ruminant animals. However, its Cu content makes it less suitable for sheep because a concentration as low as 10 ppm of Cu in the feed is said to be toxic to sheep (Church and Pond, 1988).

Previous research work have showed that Cu deficiency can cause infertility and delayed estrus in cattle and sheep (Underwood, 1977; Puls, 1994). Rams fed with Cu deficient diet were found to be less successful in breeding ewes (Weiner and Sales, 1976). This indicates how Cu is important for normal reproductive function of animals. However, information on the effect of excessive Cu on reproduction is lacking.

General Objective

- To evaluate the effect of high level of palm kernel cake diet on serving capacity and semen quality of ram lambs.

Specific Objectives

1. To investigate the effects of PKC (higher Cu diet) on serving capacity and sperm quality of ram lambs.

2. To investigate the effect of PKC (high Cu diet) on plasma Cu and serum testosterone levels in ram lambs
3. To investigate the controlling effect of Molybdenum (Mo) and Sulphur (S) supplemented to PKC based diet on plasma, liver and testis Cu level in ram lambs.