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Bending has significant importance in the sheet metal product industry. 

Moreover, the springback of sheet metal should be taken into consideration 

in order to produce bent sheet metal parts within acceptable tolerance limits 

and to solve geometrical variation for the control of manufacturing process. 

Nowadays, the importance of this problem increases because of the use of 

sheet-metal parts with high mechanical characteristics. This research 

proposes a novel approach to predict springback in the air bending process. 

In this approach the finite element method is combined with metamodeling 

techniques to accurately predict the springback. 

Two metamodeling techniques namely the neural network and the response 

surface methodology are used and compared to approximate two 

multidimensional functions. The first function predicts the springback amount 

for a given material, geometrical parameters, and the bend angle before 

springback. The second function predicts the punch displacement for a given 

material, geometrical parameters, and the bend angle after springback. The 



training data required to train the two-metamodeling techniques were 

generated using a verified nonlinear finite element algorithm developed in 

the current research. The algorithm is based on the updated Lagrangian 

formulation, which takes into consideration geometrical, material 

nonlinearity, and contact. To validate the finite element model physical 

experiments were conducted. A neural network algorithm based on the 

backpropagation algorithm has been developed. This research utilizes 

computer generated D-optimal designs to select training examples for both 

metamodeling techniques so that a comparison between the two techniques 

can be considered as fair. 

Results from this research showed that finite element prediction of 

springback is in good agreement with the experimental results. The standard 

deviation is 1.213 degree. It has been found that the neural network 

metamodels give more accurate results than the response surface 

metamodels. The standard deviation between the finite element method and 

the neural network metamodels for the two functions are 0.635 degree and 

0.985 mm respectively. The standard deviation between the finite element 

method and the response surface methodology are 1.758 degree and 1.878 

mm for both functions, respectively. 
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Lenturan mempunyai kepentingan signifikasi di dalam industri produk 

kepingan logam. Lanjutan daripada itu kesan lenturan balik ke atas kepingan 

logam patut diambil kira untuk menghasilkan lenturan terhadap kepingan 

logam di dalam had toleransi yang munasabah dan menyelesaikan variasi 

geometrical untuk kawalan proses pembuatan. Kini, kepentingan 

permasalahan ini meningkat disebabkan oleh pengunaan kepingan logam 

yang mempunyai ciri mekanikal yang tinggi. Penyelidikan ini mencadangkan 

satu pendekatan novel untuk menganggarkan kesan lenturan balik didalam 

proses lenturan udara. Dalam pendekatan ini, kaedah unsur terhingga telah 

dikombinasikan dengan kaedah permodelan meta untuk menganggarkan 

kesan lenturan balik dengan mudah dan tepat. 

Dua teknik permodelan meta, iaitu rangkaian neural dan respon permukaan 

model meta tefah digunakan dan dibandingkan untuk menentukan secara 

tepat dua fungsi dimensi kepelbagaian. Fungsi pertama menganggarkan 

kesan lenturan balik jumlah sesuatu bahan, parameter geometri dan sudut 



lenturan sebelum lenturan balik. Fungsi kedua menganggarkan pergerakan 

tumbukan untuk sesuatu bahan, parameter geometri dan sudut lenturan 

balik sesudah kesan lenturan balik. Data iatihan yang diperlukan untuk 

melatih dua teknik permodelan meta telah diambil dengan menggunakan 

model unsure terhingga bukan linear dimana ia adalah berasaskan formulasi 

terkini Lagrangian yang mengambil kira geometri, sifat bukan linear bahan 

dan jalinan. Untuk menentu-sahkan model unsur terhingga ini, ujikaji fizikal 

telah dijalankan. Satu alogritma rangkaian neural yang berasaskan 

propagasi terbalik alogritma telah dibangunkan. Penyelidikan ini 

menggunakan rekabentuk D-optimal yang diambil dari komputer untuk 

memilih contoh latihan bagi kesemua teknik permodelan meta tersebut dan 

untuk membuat perbandingan diantara permodelan yang boleh dianggap 

adil. 

Keputusan daripada penyelidikan ini menunjukkan penganggaran lenturan 

balik FEM adalah persamaan baik dengan keputusan ujikaji dan deviasi 

piawai ialah 1.213 darjah. Keputusan juga mendapati rangkaian neural 

model meta adalah lebih tepat daripada respon permukaan model meta. 

Deviasi piawai diantara FEM dan rangkaian neural model meta bagi dua 

fungsi adalah 0.635 darjah dan 0.985 mm. Deviasi piawai diantara FEM dan 

methodologi respon permukaan ialah 1.758 darjah dan 1.878 mm untuk 

kedua-dua fingsi tersebut. 
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CHAPTER 1 

INTRODUCTION 

1 .I Background 

Bending in manufacturing of engineering metal sheet parts is a cost 

effective technique since it allows the elimination of machining and 

welding operations. The components produced by the sheet-metal 

bending range from simple to complex shapes and can be as small as 

certain parts for the electronic industry or as large as car bodies for the 

automotive industry. 

Sheet metal air bending processes are one of the most frequently used 

manufacturing operations in industry. Air bending is a forming process 

with great flexibility compared to other die bending processes. With the 

use of only one tool set it is possible to bend sheets of various thickness 

and mechanical properties to different bending angles. As the tooling is 

retracted, the elastic strain energy stored in the material recovers to 

reach a new equilibrium and causes a geometry distortion due to elastic 

recovery, the so-called springback. Springback refers to the shape 

discrepancy between the fully loaded and unloaded configurations. 

Springback depends on a complex interaction between material 

properties, part geometry, die design, and processing parameters. 



Nowadays, the importance of the springback problem increases because 

of the use of sheet-metal parts with high mechanical characteristics. The 

capability to model and simulate the springback phenomenon early in the 

new product design process can significantly reduce the product 

development cycle and cost. 

1.2 Problem Statement 

Analytical models based on materials properties and tool geometry are 

available to predict springback. Most of the analytical models based on a 

lot of simplifying assumptions due to the complexity of the problem and 

do not provide accurate predictions. One accurate way to predict the 

springback is to use the finite element method (FEM). 

The finite element method is a powerful numerical technique that has 

been applied in the past years to a wide range of engineering problems. 

More recently FEM has been used to model fabrication processes. When 

modeling fabrication processes that involve deformation, such as sheet 

metal bending, the deformation process must be evaluated in terms of 

stresses and strain states in the body under deformation including 

contact issues. The major advantage of this method is its applicability to 

a wide class of boundary value problems with little restriction on work 

piece geometry. However, sheet metal forming simulation using the finite 

element method involves material, geometric and contact nonlinearity, 

which make simulation of the forming process computationally expensive. 



Moreover, finite element simulation applied to the sheet metal bending 

process becomes a trial-and-error process in which a set of input factors 

is used to predict a set of output performance measures. If the desired 

performance is achieved, a good system design has been attained. 

Otherwise the process is repeated until a satisfactory set of performance 

measures is obtained. Unfortunately, the iterative nature of this process 

can result in both high computing cost and difficulties in interpretation and 

prediction of the results. 

In order to overcome these problems this study develops a novel 

approach using finite element method combined with metamodeling 

techniques so that the springback can be accurately predicted. 

One of the main objectives of a metamodel is to accurately represent the 

input-output relationships over a wide range of the parameter space, 

while being computationally more efficient than the underlying finite 

element simulation model. Furthermore, the concept of metamodels can 

be useful to facilitate understanding the relationships between springback 

and the factors that influence the springback. In this research, two 

metamodeling techniques namely the neural network and the response 

surface methodology are used and compared to approximate two 

multidimensional functions used to predict the springback and the 

displacement required to achieve a certain bend angle after springback. 


