
 

 
 

UNIVERSITI PUTRA MALAYSIA 
 
 

TUMOR EXTRACTION FOR BRAIN MAGNETIC RESONANCE 
IMAGING USING MODIFIED GAUSSIAN DISTRIBUTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUSSAY ABBAS SALIH AL-BADRI. 
 
 

Fk 2006 19 



TUMOR EXTRACTION FOR BRAIN MAGNETIC RESONANCE IMAGING 
USING MODIFIED GAUSSIAN DISTRIBUTION 

BY 

QUSSAY ABBAS SALIH AL-BADRI 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirement for the Degree of Doctor of Philosophy 

January 2006 



DEDICATION 

In the name of God, Most Gracious, Most Merciful 

Dedication to 

This thesis is dedicated to my parents, and my brothers who have always been with 

me all the time, for all the sacrifices they made to help me reach this point. 

My Parents, 

Professor Dr. Abbas Salih Al-Badri 

Professor Dr. Layla Abd Al-Wahab 

My Brothers, 

Oday, Ghaith, Meis, and the rest of my family 



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirements for the degree of Doctor of Philosophy 

TUMOR EXTRACTION FOR BRAIN MAGNETIC RESONANCE 
IMAGING USING MODIFIED GAUSSIAN DISTRIBUTION 

BY 

QUSSAY ABBAS SALIH AL-BADRI 

January 2006 

Chairman: Associate Professor Abdul Rahman Ramli, PhD 

Faculty : Engineering 

Magnetic Resonance Imaging (MRI) is extensively used in the study of brain. 

Segmentation of MR brain images is necessary for a number of clinical 

investigations of various complexity, change detection, cortical labeling, and 

visualization in surgical planning. The volume of enhancing lesions, following the 

administration of paramagnetic contrast agent is an important indicator of pathology 

in multiple sclerosis (MS). Manual estimation of enhancing lesion volumes 

introduces significant errors, and operator bias, besides being time consuming and 

subjective. Therefore, there is a need for automatic identification and estimation of 

volumes of the present MS lesions specially by dealing with a large number of 

images that are typically acquired in multi-center clinical trials. 

In the developed techniques, 150 T1- and T2-weighted spin echo images were taken 

from the routine scans of Kuala Lumpur General Hospital. 



Multiple sclerosis lesions visualized by morphological MRI are classified through a 

feature map technique on T1 weighted MRI tissue. Gray level morphology methods 

are used to make tissue types in the images more homogenous and minimize 

difficulties with connections to outside tissue. A method for hzzy connectedness 

and combinations of the different segmentation techniques were experimented. A 

gain-based correction method; probability density function model are used to cluster 

white and gray matters, cerebrospinal fluid, and meninges. Results of segmentation 

have been validated by a group of neuro-radiologists. 

3D visualization has been implemented for the segmented regions as well as brain 

lesion. The visualization of the segmented structures uses a combination of volume 

rendering and surface rendering. 

The mutual information algorithms used in this work has been developed and 

experimented in the system and has proven to yield more accurate and stable results 

than other algorithms. 

Currently testing the validation of the proposed segmentation in a validation study 

that compares resulting MS lesion as well as gray and white matter tissue structures 

with Neural Network expert segmentation system. The proposed method versus 

Neural Network rater validation showed an average validation score of overlap ratio 

of >85% for gray and white matters tissue segmentation and for MS lesion the rater 

validation showed an average overlap ratio of > 87%. 
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Kaedah Pengimejan Resonans Magnetik atau (MRI) digunakan secara meluas di 

dalam bidang kajian otak. Segmentasi imej otak MR diperlukan untuk siasatan 

klinikal bagi pelbagai kerumitan, dan pengesanan pertukaran, pelabelan kortikal, 

dan visualisasi perancangan pembedahan. Jumlah pertambahan lesion, berikutan 

pentadbiran ejen kontras paramagnetic merupakan petunjuk penting bagi patologi 

berbilang sklerosis (MS). Jumlah lesion yang bertambah yang dianggarkan secara 

manual memperlihatkan ralat yang ketara, kecenderungan operator, mengambil 

masa serta subjektif. Oleh itu, identifikasi secara automatik dan anggaran jumlah 

pertambahan lesion dalam MS adalah perlu terutamanya apabila menguruskan 

sejumlah besar imej yang lazimnya diambil dalam percubaan klinikal di pelbagai 

tempat. 

Dalam teknik yang dibangunkan ini, lebih daripada 150 imej TI-and-T2-weighted 

spin echo diambil dari imbas rutin di Hospital Besar Kuala Lumpur. 
- . - - -. . -. - - - - 



Penambahan bukan-lesion menerusi pemetaan kebarangkalian hngsi ketumpatan 

yang digambarkan oleh morfologikal MRI, diklasifikasikan menerusi teknik 

pemetaan sifat, dan ke atas tisu berpemberat TI MRI. Kaedah morfologi tahap 

kelabu digunakan supaya jenis tisu lebih seragam, selain mengurangkan kesulitan 

dengan tisu luar. Kombinasi kaedah penambahan tersebut dengan teknik segmentasi 

berbeza dieksperimentasi. Kaedah perolehan berdasarkan pembetulan dipilih; model 

fungsi kebarangkalian ketumpatan digunakan untuk mengelompok bahan-bahan 

putih dan kelabu, cecair cerebrospinal dan meninges. Keputusan segmentasi 

disahkan oleh ahli neuro-radiologi, 

Visualisasi 3D dilaksanakan untuk segmentasi bahagian dan lesion otak. visualisasi 

struktur segmen tersebut menggunakan kombinasi terjemahan jumlah dan 

te rjemahan permukaan. 

Algoritma informasi bersama yang digunakan dalarn kerja ini telah dibangunkan 

dan dieksperimen di dalam sistem ini dan terbukti kesahihan dan ketepatannya 

berbanding dengan algoritma yang lain. 

Kesahihan ketepatan segmentasi yang dicadangkan dalam perbandingan MS lesion 

terutamanya dalam tahap kelabu dan putih tisu struktur menggunakan rangkaian 

neural sistem segmentasi. Kaedah yang dicadangkan dibandingkan antara rangkaian 

neural menunjukkan purata kebolehpercayaan dalam nisbah > 85% untuk tahap 

kelabu dan putih tisu struktur serta MS lesion menunjukkan purata nisbah > 87%. 
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CHAPTER I 

INTRODUCTION 

Recently radiologists can review images of several cross sections of a brain and 

abdomen. Some times, they required to make 3D reconstruction in order to make a 

clinical diagnosis or to evaluate the results of a therapy on a patient. In recent years, 

the interdisciplinary field of medical image processing has produced several 

automatic and semi-automatic tools to assist medical practitioners and researchers. 

For instance, tools for 3D visualization of anatomy (i.e. reconstruction and 

rendering) used in surgical planning as well as educational purposes, are available in 

several hospitals and research laboratories. 

The validations of automatically anatomical structures models are frequently non- 

rigid and exhibit substantial morphological variation from subject to subject. Hence 

the task of segmenting these structures from medical images is one of the 

difficulties to identify a region in an image with only approximate knowledge of its 

shape, size, gray level appearance, and spatial location. Different segmentation 

applications are available to add some knowledge in each of these categories, and 

the challenge is to combine them to overcome lack of information in one category is 

offset by the information in the others. In this thesis, methodology for segmentation 

of brain tissue of MRI and MS lesion will be studied. By applying a series of 



combined techniques that exploit gray level, topological and spatial information in 

the brain images will be discussed. 

The specific techniques used are probability of density function segmentation for an 

intensity based correction and classification of the data. Where it combined with a 

binary and grayscale morphology and connectivity for incorporation of relative 

topological information. Four steps have been implemented where the segmentation 

of the brain divided base on the brain structure intensity and statistical distribution 

of the tissues. 

The goals of medical image processing include increased automation of the existing 

tools that have proven useful to the medical community yet still require assistance 

from experts. 

1.1 The Brain Segmentation Problem 

Segmentation is an important step in most medical image analysis. In many 

classification processes, segmentation forms the first step. The applications of 

segmentation include diagnosis, evaluation and treatment of the disease. Since 

manual segmentation is tedious, time consuming and subjective, attempts have been 

made to automatically classify and quantify tissues, organs, and disease states from 

images obtained by various medical imaging modalities. 

Segmentation of medical images is a challenging task due to the complexity of the 

images and the absence of models of anatomy that fully capture the possible 



deformities in each structure. Due to the relative low signal to noise ratios and 

inherent artifacts generally present in medical images, their segmentation is 

particularly difficult. Because of these problems, even though many algorithms have 

been reported, most of them have inconsistent results and limited applications. Thus, 

only a few algorithms are being used in practice. 

No other imaging modality has witnessed the explosive growth and development 

that Magnetic Resonance Imaging (MRI) has over the past 10 years. Once labeled 

NMR, for Nuclear Magnetic Resonance imaging, the nuclear term has been 

removed due to its negative connotations among the general public. Using a 

combination of the inherent magnetic resonance properties of tissue and application 

of radio frequency pulses, MRI obtains images by measuring various tissue 

characteristics. The result of frequency information is converted, using Fourier 

Transform techniques, to spatial intensity information of slices through the body. 

These slices can be integrated using advanced computer graphics techniques to 

produce 3D views of the imaged tissues. 

MRI is extensively used in brain studies, that it is an advanced medical imaging 

technique providing rich information about the anatomy of human soft tissue. 

Brain tissue is a particularly complex structure, and its segmentation is an important 

step for derivation of computerized anatomical atlases, as well as pre-and intra- 

operative guidance for therapeutic intervention. 



MRI segmentation has been proposed for a number of clinical investigations of 

varying complexity. Measurements of tumor volume and its response to therapy 

have used image grayscale methods as applied to X-Ray Computerized Tomography 

(CT) or simple MRI datasets (Cline et al, 1987). However, the differentiation of 

tissues within tumors that have similar MRI characteristics such as edema, necrotic 

or scar tissue have proven to be important in the evaluation of response to therapy. 

Hence, multi-spectral methods have been proposed (Vannier el at, 199 1 ; Clarke, et 

al, 1993). Recently, multi-modality approaches, such as Positron Emission 

Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) studies 

using radiotracers (Tjuvajev et al, 1994), or contrast materials (Tjuvajev et al, 1994; 

Buchbinder et al, 1991) have been suggested to provide superior tumor tissue 

specification and to identify active tumor tissue. Hence, segmentation methods need 

to include these additional image data sets. In the same context, a similar 

progression of segmentation methods is evolving for the planning of surgical 

procedures primarily in neurological investigations (Hill et al, 1993; Zhang, 1990; 

Cline et al, 1987), surgery simulations (Hu et al, 1990; Kamada et al, 1993) or the 

actual implementation of surgery in the operating suite where both normal tissues 

and the localization of the lesion or mass needs to be accurately identified. 

The methods proposed include grayscale image segmentation and multi-spectral 

segmentation for anatomical images with additional recent efforts directed toward 

the mapping of functional metrics fMRI to provide locations of important functional 

regions of the brain as required for optimal surgical planning. 


