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Subcarrier Multiplexing (SCM) can be used to increase the capacity of 

any optical network. Both Single-Optical-Carrier (SOC) and Multiple- 

Optical-Carrier (MOC) SCM systems can be employed. However, in SCM- 

MOC systems, when two lasers carrying subcarrier channels operate 

with very close spaced wavelength, beating between the lasers and 

beating between the lasers and Four-Wave Mixing (FWM) terms can 

occur. This will increase the noise at the photodetector. This type of 

noise is called Optical Beat Interference (OBI) and it is dependent on the 

accumulated Chromatic Dispersion (CD) experienced 

transmission. This thesis establishes a new approach to reduce OBI by 

suppressing the optical carrier. The effect of OBI in the presence of FWM 

is also examined and analyzed. Additionally, applications of OBI in 

optical communications are investigated, particularly for measuring CD 

and the modulator frequency chirp. 

in the 



The new approach for OBI reduction uses optical carrier suppression. 

This method achieved a 28 dB improvement in the Carrier-To- 

Interference (CIR) ratio. In addition, OBI penalty in SCM-MOC network in 

the presence of FWM is studied mathematically and verified through a 

simulation exercise, which shows that the maximum number of 

subcarrier or the bandwidth of the SCM-MOC system will be limited by 

Main-Beating and FWM-Beating when FWM is present. 

The novel technique for CD measurement is performed by 

simultaneously launching a pump and probe optical signals at ol 

angular optical frequency separation, and two phase-conjugated terms 

into the SMF. The relative power of the beat frequencies that appear 

after the photodetector at 0 1  and at 201 is used to determine the 

accumulated CD. This technique was successfully demonstrated using 

a Semiconductor Optical Amplifier (SOA) as a phase conjugator to 

achieve a 19 dB relative power variation as  a result of up to 1900 ps/nm 

CD change. 

A new method to measure the modulator frequency chirp parameter 

using OBI is performed in two steps. In the first step, the frequency 

separation between two optical signals passing through a phase 

conjugator is changed, produces a resonance reference frequency as a 

result of the accumulated fiber CD. In the second step, an RF modulated 
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signal passes through the same length of fiber as in the first step. A 

second resonance frequency is produced as a result of fiber CD and 

modulator chirp. The difference between the two resonance frequencies 

is used to measure the modulator chirp. The new method achieves a 

measurement range of * 5 and maximum resonant frequency of 8.1 GHz 

at  an accumulated CD 1632 ps/nm. 
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Penggabungan Sub-Pembawa boleh digunakan untuk meningkatkan keupayaan sistem 

komunikasi optikal. Kedua-dua sistem Penggabungan Sub-Pembawa dengan Pembawa 

Optikal Tunggal ataupun Pembawa Optikal Pelbagai boleh digunakan untuk tujuan ini. 

Walaubagaimanapun, di dalam sistem Pembawa Optikal Pelbagai, apabila dua laser 

yang diolah dengan saluran sub-pembawa beroperasi dalam jarak gelombang yang 

terlalu hampir, fenomena pukulan diantara dua laser dan diantara kedua-dua laser dan 

komponen Campuran Empat Gelombang akan berlaku. Keadaan ini akan meningkatkan 

kebisingan di pengesan foto. Jenis kebisingan ini dikenali sebagai Gangguan Pukulan 

Optik dan ianya bergantung kepada Pertebaran Kromatik terkumpul semasa 

penghantaran. Thesis ini memperkenalkan cara untuk mengurangkan Gangguan Pukulan 

Optik dengan kaedah Pengurangan Pembawa Optik. Kesan Gangguan Pukulan Optik 

yang digabungkan dengan kesan Campuran Empat Gelombang juga turut dikaji. Selain 

dari itu, kajian juga dibuat tentang penggunaan Gangguan Pukulan Optik di dalam 



sistem komunikasi optikal, khususnya untuk mengukur Pertebaran Kromatik dan 

Perubahan Frekuensi di dalam pengolah optik. 

Kaedah baru untuk mengurangkan Gangguan Pukulan Optikal adalah dengan 

mengurangkan kuasa pembawa optik. Kaedah ini berjaya memperbaiki Nisbah 

Pembawa kepada Gangguan dengan kadar 28 dB. Kesan Gangguan Pukulan Optik yang 

digabungkan dengan kesan Campuran Empat Gelombang diselidik dengan kaedah 

matematik dan disahkan melalui simulasi. Keputusan menunjukkan bilangan saluran 

sub-pembawa akan dihadkan oleh kehadiran Gangguan Pukulan Optikal dan Campuran 

Empat Gelombang. 

Kaedah baru untuk mengukur Pertebaran Kromatik adalah dengan menghantar dua 

gelombang, gelombang pam dan gelombang pengesan dengan perbezaan jarak frekuensi 

optikal ol dan dua lagi gelombang yang dibalikkan fasanya ke dalam SMF. Kuasa relatif 

kedua-dua jenis pukulan selepas pengesan foto pada frekuensi ol dan 2 o l  digunakan 

untuk mengukur Pertebaran Kromatik terkumpul. Kaedah ini berjaya dibuktikan dengan 

penggunaan Penguat Optikal Semikonduktor sebagai pembalik fasa. Variasi kuasa relatif 

yang berjaya diukur adalah sebanyak 20 dB dengan perubahan Pertebaran Kromatik 

terkumpul sehingga 1900 pslnm. 

Kaedah baru untuk mengukur Perubahan Frekuensi di dalam pengolah optik dengan 

menggunakan Gangguan Pukulan Optik dibuat dalam dua fasa. Dalam fasa yang 

pertama, jarak perbezaan frekuensi optik di antara dua gelombang optik yang melalui 
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pembalik fasa ditukar. Ini akan menghasilkan frekuensi resonans rujukan hasil daripada 

Pertebaran Kromatik terkumpul. Dalam fasa yang kedua, satu gelombang optikal yang 

diolah oleh satu gelombang frekuensi radio dihantar melalui gentian optik yang sama. 

Ini akan menghasilkan frekuensi resonans hasil daripada Pertebaran Kromatik terkumpul 

dan Perubahan Frekuensi di dalarn pengolah optikal. Perbezaan diantara kedua-dua 

frekuensi resonans ini boleh digunakan untuk mengukur Perubahan Frekuensi di dalam 

pengolah optik. Kaedah baru ini mampu mengukur Perubahan Frekuensi dengan julat 

ukuran sebanyak + 5 dan hanya menggunakan frekuensi pengolahan 8.1 GHz dengan 

pertebaran kromatik terkumpul 1632 psl nm. 

... 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Optical fiber communications has been growing rapidly over the past 

years. The major break-through in optical fiber transmission came after 

invention of Erbium-Doped Fiber Amplifier (EDFA) and Distributed 

Raman amplifier (DRA). Due to the wide gain bandwidth of the EDFA 

and DRA, the Wavelength-Division Multiplexing (WDM) channels can be 

simultaneously amplified and transmitted over long distances. The bit 

rates have reached 1.28-Tbit/ s over 70 km for single-channel [ I ] ,  and 3- 

Tbit/s (300 x 1 1.6-Gbit/s, C+L band) over 7,380 km, 1.28-Tbit/s (32 x 

40-Gbit/s, C band) over 4500 km, 1.52-Tbit/s (38 x 40-Gbit/s, C band) 

over 6200 km, 10.2-Tbit/s (256 x 42.7-Gbit/s, C+L band) over 300 km, 

and 10.92-Tbit/s (273 x 40-Gbit/s S+C+L band) over 117 km for WDM 

systems [2-61. The spectral efficiency has reached 1.6 (bits/ s) / Hz [7]. 

In order to maximize the information transfer over any communication 

link, it is common to multiplex several signals onto the transmission 

medium. There are essentially four multiplexing approaches to increase 

transmission capacity on a fiber-optic link. The Space Division 



Multiplexing (SDM) approach keeps the same bit rate and uses more 

fiber utilizing one wavelength to increase network capacity [8]. It is the 

most straightforward method. However, this approach requires more 

fibers, which may require laying new fiber, which could be very 

expensive and also requires separate set of repeaters for each fiber. 

Therefore, this approach is only used when distance is short enough not 

to use any repeaters and fibers are largely available. The Time Division 

Multiplexing (TDM) approach increases the transmission bit rate on the 

fiber using one wavelength [9]. This approach requires high bit rate 

transmission on the fiber, which will be limited by dispersions such as 

Chromatic Dispersion (CD) and Polarization Mode Dispersion (PMD). 

This approach is also limited by the electronic interface speed. The WDM 

approach keeps the same bit rate and uses more wavelengths to 

increase network capacity over the same fiber [lo]. This approach can 

be designed to be transparent which will allow different bit rate and 

protocol to be carried by different wavelengths. However, this approach 

requires separate terminating equipment for each wavelength - laser and 

detector. 

Another technology that can be used to increase the efficiency of 

bandwidth utilization is the Sub-carrier Multiplexing (SCM). It is an old 

technology that has  been studied and applied extensively in microwave 

and wireless communication systems. A combination of SCM and WDM 



(by using multiple optical carriers) has the potential for achieving a 

bandwidth in excess of 1 THz. Since the signal is transmitted optically, 

the microwave carrier acts a s  a subcarrier for the optical carrier, and 

the technique is referred to as SCM. 

In SCM, the transmitted signal is generated in two stages. First, several 

microwave subcarriers are modulated by the data. Second, the resulting 

microwave signals modulate the optical carrier [ l l ] .  SCM has been a 

well known and an attractive technique for voice, data, and video 

distribution in the multi-access lightwave systems, especially, cable- 

television (CATV) applications [12, 131. SCM can take advantage of well- 

developed existing electronic technologies, including analog and digital 

modulation as well as microwave and baseband signaling. There is also 

no need for synchronization between each channel and a master clock, 

as is the case for TDM systems. It also takes advantage of the full 

bandwidth capacity of Single Mode Fiber (SMF) and electro-optic 

components. Because individual channels in SCM are independent, 

SCM systems have great flexibility in allocation of bandwidth, and can 

thus readily accommodate rapidly evolving changes. In addition to being 

flexible, SCM systems are also cost effective, as they provide a way to 



take advantage of the bandwidth potential of fiber optics using 

conventional well-established microwave components. 

In SCM, all microwave subcarriers can modulate one optical carrier [14], 

or each one of them can modulate a separate optical carrier [15]. SCM 

with a single optical carrier (SCM-SOC) is illustrated in Figure 1.1, while 

SCM with multiple optical carriers (SCM-MOC) is illustrated in Figure 

1.2. Optical carriers in an SCM-MOC configuration have the same 

average center frequency. 

In SCM-MOC system, different lasers operating a t  different wavelengths 

(nominally with the same wavelength) will produce beat interference a t  

the photodetectors, causing outage of the microwave subcarriers [ 161, 

which modulate the optical carriers. This subcarrier outage will severely 

degrade the performance of SCM system. This phenomenon is called 

Optical Beating Interference (OBI) and it is the highlighted issue in this 

thesis. 

OBI is a limiting factor for SCM networks [17]. It is a result of two or 

more users transmitting simultaneously on the nominally same optical 

channel by using different subcarrier frequencies. Since the optical 

carrier frequencies are usually slightly different due to environmental 

changes, their optical mixing would produce beating terms in the 


