VEGETATION ASSOCIATION AND SITE PREFERENCES OF TONGKAT ALI (EURYCOMA LONGIFOLIA JACK) IN A HEALTH LOWLAND FOREST, PAHANG, MALAYSIA

ZAHARI IBRAHIM.

FH 2005 9
VEGETATION ASSOCIATION AND SITE PREFERENCES OF TONGKAT ALI
(EURYCOMA LONGIFOLIA JACK) IN A HEATH LOWLAND FOREST, PAHANG,
MALAYSIA

ZAHARI IBRAHIM

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2005
VEGETATION ASSOCIATION AND SITE PREFERENCES OF TONGKAT ALI
(EURYCOMA LONGIFOLIA JACK) IN A HEATH LOWLAND FOREST, PAHANG, MALAYSIA

By

ZAHARI IBRAHIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master Science

December 2005
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement of the Degree of Master of Science

VEGETATION ASSOCIATION AND SITE PREFERENCES OF TONGKAT ALI (EURYCOMA LONGIFOLIA JACK) IN A HEATH LOWLAND FOREST, PAHANG, MALAYSIA

By

ZAHARI BIN IBRAHIM

December 2005

Chairman : Mohamad Azani Alias, PhD
Faculty : Forestry

Tongkat Ali (Eurycoma longifolia Jack) is one of the most popular medicinal plants and is gaining greater recognition in Malaysia. Currently, E. longifolia is being over-exploited due to its high popularity as a potential herbal medicine and high demand in the market. Thus, this study on the species site preferences of E. longifolia is necessary to ensure successful conservation of the species. There have been no studies reported on the ecological requirements, vegetative association, microclimate and site-suitability of E. longifolia. The objectives of this study are to identify the vegetative association and tree species composition of E. longifolia in its natural habitat; to determine the relationship between these
plant associations and the soil characteristics and to determine the relationship between foliar nutrient concentrations and density of *E. longifolia*.

The study was carried-out in a heath lowland forest, located in Compartments 6 and 10 of Menchali Forest Reserve, Rompin, Pahang. A total of 20 vegetation samples (relevé), each with the size of 30 m x 30m (900m²) were established in Compart 6 (secondary forest) and Compt. 10 (primary forest) and were classified into four groups based on coverage density of *E. longifolia* viz, rare (E1), low (E2), moderate (E3) and high (E4). This study is basically a phytosociological study using the design primarily based on the Braun Blanquett Method (1964). A quantitative study of the vegetation layer namely dominant (T1), understorey (T2), shrub (S) and Herbs (H)) were recorded from 900m² relevés to include species composition, association, diversity and plant communities of this area. The environmental variables viz soil temperature, moisture content, pH, bulk density, particle density, soil nutrients, organic matter, soil micronutrients, light intensity and altitude were also analyzed and recorded for each relevés. In addition, foliar analysis of *E. longifolia* and shrub species was also done.
The results revealed that there are 207 species of trees, shrubs, herbs, ferns and herbaceous plants representing 74 families and 155 genera. It also found that there are seven types of life forms in Menchali Forest Reserve, namely woody plant, ferns, moses, climbers, palms, herbaceous and ephiphytes, whereas the woody plants are the most abundant constituting of 53.2% by family 62% by genera and 61% by species. *Eurycoma longifolia*, *Brackenridgea palustris*, *Garcinia nigrolineata*, *Syzygium syzygioides*, *Diospyros styraciformis*, *Ardisia crenata*, *Dipterocarpus chartaceus*, *Calophyllum canum*, *Psydrax maingayi*, *Memecylon edule*, *Shorea materialis*, *Vatica pauciflora*, *Champereia manillana*, *Erythroxylum cuneatum*, *Guioa pleuropteris*, *Tetracera indica*, *Syzygium campanulatum* and *Licuala spinosa* were among the common species in the study area. These were differentiated into two differential communities of *Vitex pinnata-Bouea macrophylla* and *Xanthophyllum wrayi-Bromhaedia finlaysoniana*. The two communities constituted sixteen sub-communities which represent the association species of *E. longifolia*.

The results of soil analysis showed that most of the soil physical and chemical properties were significantly different (p<0.05) among the cluster groups such as total nitrogen (N), total phosphorus (P), calcium (Ca), sodium (Na), magnesium (Mg), copper (Cu), zinc (Zn) and soil pH. The correlation analysis between the soil parameters and density of *E. longifolia* showed that the soil
parameters influenced the distribution of this species are moisture content, soil pH, Total P, Ca, Cu, Zn, Mn and Fe. Foliar nutrient concentrations are not significantly different among the cluster groups except for Mn and Zn. Light intensity in Group E1 recorded the highest value in light intensity (4012 lux) while the lowest value was in Group E4 (1651.71 lux). The light intensity was significantly different (P≤0.05) among the cluster groups. This indicates that the distribution of *E. longifolia* was mainly as understorey growth and is considered as a shade-tolerant species.

Relationship between species and environmental variables showed that light intensity, soil moisture content, pH, texture (%), total P, calcium, copper and zinc were among the important factors in the distribution of the vegetation in Menchali forest. This implies that the site preferences and density of *E. longifolia* was also influenced by these factors. The results of this study also showed the usefulness of phytosociological study in the development of community association of similar species growing in heath lowland forest. It is useful to develop association community of *E. longifolia* in the heath lowland forest, and to provide valuable information for rehabilitation, conservation and restoration of *E. longifolia*.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PERSEKUTUAN TUMBUHAN DAN CIRI-CIRI KAWASAN BAGI TONGKAT ALI (EURYCOMA LONGIFOLIA JACK) DI HUTAN PAMAH KERANGAS, PAHANG, MALAYSIA

Oleh

ZAHARI IBRAHIM

Disember 2005

Pengerusi : Mohamad Azani Alias, PhD
Fakulti : Perhutanan

Tongkat Ali (Eurycoma longifolia Jack) adalah diantara spesies tumbuhan ubatan yang paling popular dan semakin mendapat pengiktirafan di Malaysia. Pada masa kini, E. longifolia telah dieksploit tanpa kawalan kesan daripada populariti yang tinggi sebagai tumbuhan herba yang berpotensi dan permintaan yang tinggi di pasaran. Untuk itu, kajian tentang spesies dan ciri-ciri kawasan bagi E. longifolia adalah sangat diperlukan dalam memastikan kejayaan pemeliharaan spesies ini. Tiada lagi yang kajian dilaporkan keatas spesies ini berkaitan dengan keperluan ekologi, persekutuan tumbuhan (komuniti tumbuhan), mikroklimaks dan kesesuaian spesies dengan kawasan bagi E. longifolia. Bagi maksud tersebut, kajian ini dijalankan bertujuan untuk mengenal pasti...
persekutuan komuniti tumbuhan dan komposisi spesies bagi E. longifolia di dalam habitatnya sendiri, menentukan kaitan persekutuan tumbuhannya dengan cirri-ciri tanah dan menentukan perkaitan diantara kandungan nutrient daun E. longifolia dengan kepadatan taburannya.

Kajian ini telah dijalankan di hutan tanah pamah jenis ‘heath’ di Kompatmen 6 dan 10, Hutan Simpan Menchali, Rompin, Pahang. Sejumlah 20 relevé (kuadrat tumbuhan), dimana setiap satunya bersaiz 30 m x 30 m (900m²) telah ditubuhankan di Kompatmen 6 dan 10 dan seterusnya telah dikelaskan kepada empat kumpulan berasaskan kepada kepadatan litupan E. longifolia iaitu liar/tiada (E1), rendah (E2), sederhana (E3) dan tinggi (E4). Rekabentuk kajian yang digunakan adalah kaedah ‘fitososiologi’, berdasarkan kepada Braun-Blanquet (1951). Kajian secara kuantitatif keatas lima strata tumbuhan iaitu Dominan (T1), Sub-Dominan (T2), Jaras (S), Anak Pokok (H) dan Lumut (M) telah dibanci dan direkodkan maklumat-maklumat berkaitan dengan komposisi spesies, persekutuan dan kepelbagaian hayat. Pembolehubah alam persekitaran juga direkodkan seperti fizikal dan kimia tanah, keamatan cahaya dan ketinggian (altitude). Sebagai tambahan, analisis daun bagi kategori pokok dan renik E. longifolia juga dijalankan.

Keputusan daripada analisa tanah menunjukkan kebanyakan elemen fizikal dan kimia tanah terdapat perbezaaan yang ketara pada (P<0.05) diantara kumpulan-kumpulan relevé. Taburan tumbuh-tumbuhan dan juga E. longifolia adalah dihadkan oleh elemen tanah seperti nitrogen (N), jumlah fosforus (P), kalsium
(Ca), natrium (Na), magnesium (Mg), kuprum (Cu), zink (Zn) dan pH tanah. Beberapa ciri-ciri fizikal seperti kandungan kelembapan, tekstur dan ketumpatan pukal juga mempengaruhi tumbesaran dan taburan *E. longifolia*. Kesemua elemen nutrient daun didapati tidak menunjukkan perbezaan yang ketara diantara kumpulan kecuali dua elemen iaitu mangan (Mn) dan zink (Zn). Sementara itu, keputusan keamatan cahaya kumpulan E1 mencatatkan nilai keamatan yang tinggi (4012 lux) manakala nilai yang rendah adalah bagi (1651.71 lux). Nilai-nilai keamatan cahaya adalah berbeza di antara kumpulan dan terdapat perbezaan yang ketara di kalangan kumpulan, ini menunjukkan *E. longifolia* adalah dari jenis spesies toleran kepada naungan.

Perkaitan di antara spesies dan alam persekitaran pula menunjukkan keamatan cahaya, kandungan kelembapan tanah, pH, tekstur tanah, jumlah P, Ca, Cu dan Zn adalah diantara faktor-faktor utama dalam taburan tumbuhan di Hutan Simpan Menchali Ini bermakna rujukan kawasan dan kepadatan *E. longifolia* juga dipengaruhi faktor-faktor tersebut. Keputusan daripada kajian ini juga menunjukan kepentingan kajian ini dalam pembangunan persekutuan tumbuhan bagi *E. longifolia* di hutan jenis ini dan memperolehi maklumat-maklumat yang berguna untuk pemuliharaan, konservasi dan penanaman *E. longifolia*.
ACKNOWLEDGEMENTS

In the name of Allah SWT, the most Benevolent and most Merciful

First of all I would like to express my heartfelt gratitude and appreciation to my supervisor, Dr. Mohamad Azani Alias for the invaluable help, dedicated efforts, guidance, suggestions and constructive criticisms throughout this study. I am also very grateful to my two supervisors, Prof. Dato’ Dr. Nik Muhamad Majid and Captain. Dr. Mohd Zaki Hamzah for their kind assistance and advice throughout the preparation of this study.

The support given by Forestry Department Peninsular Malaysia particularly the Director General, Dato’ Hj. Abdul Rashid Mat Amin, the Deputy Director General, Dato’ Shaharuddin Hj. Mohamad Ismail and also Dr. Hj. Abd Rahman Abd. Rahim, Director of Forest Plantation Unit are gratefully acknowledged.

Special thanks goes to the Mr. Mohd. Basri Abdul Manaf, Kuala Rompin District Forest Officer, State Forestry Department of Pahang for providing the study site and his staff for their help in establishing the vegetation relevé.
Profound appreciation and thanks are also extended to, Mr. Shamsul Khamis Mr. Arifin Abdu and Dr. Deribe Gurmu Benti who assisted on data processing, identification of specimens and analysis, and Mr. Mohd. Rizal, Ms. Radhiah Zahria, Mrs. Azuliani Supangat, Mr. Ridzuan Salleh, Mr. Inthavy Akkharath and many others who assisted in the field work and data collection. Sincere thanks also go to Mr. Muzammal, Ms. Latifah and Mr. Marzuki Jamaluddin who assisted in the preparation and analysis of soil and leaves samples.

Last but not least, I wish to extend my gratitude to my wife, Dr. Siti Arbaiyah Mun Sarikh and my daughters (Nur Zafirah, Nur Zakirah, Nur Zahirah, Nur Afifah, Nur Aqilah and Afiqah Zuhairah) for their constant support, encouragement and understanding throughout the study.

May Allah SWT bless you all.
I certify that an Examination Committee met on December, 13 2005 to conduct the final examination of Zahari bin Ibrahim on his Master of Science thesis entitled "Vegetation Association and Site Preferences of Eurycoma longifolia Jack in a Heath Lowland Forest of Menchali Forest Reserve, Pahang State of Malaysia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azmy Mohamed, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Faridah Hanum Ibrahim, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Jamaluddin Basharuddin, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Jumaat Adam, PhD
Associate Professor
Faculty of Environmental Sciences and Natural Resources
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 FEB 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohamad Azani Alias, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Dato' Nik Muhamad Ab. Majid, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Captain Mohd. Zaki Hamzah, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 MAR 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ZAHARI IBRAHIM

Date: 14 Feb 2006
TABLE OF CONTENT

ABSTRACT i
ABSTRAK v
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF TABLES xvii
LIST OF FIGURES xx
LIST OF ABBREVIATIONS xxiii

CHAPTER
1 INTRODUCTION 1
1.1 Justification of the Study 7

2 LITERATURE REVIEW 10
2.1 Plant Diversity of the Malaysian Forest 10
 2.1.1 Forest Types and Formations 14
 2.1.2 Heath Lowland Forest in Peninsular Malaysia 18
2.2 Relationship between Vegetation Association and Soil Characteristics 21
 2.2.1 Concept of Vegetation Association 25
 2.2.2 Importance of Vegetation Community Study 27
 2.2.3 Influences of Soil Physical Properties on Vegetation Association 28
 2.2.4 Influence of Soil Chemical Properties on Vegetative Association 30
 2.2.5 Influences of Microclimate on Vegetation Composition and Distribution 32
2.3 Foliar Nutrient Analysis 33
 2.3.1 Relationship between Foliar Nutrients and Soil Characteristics 36
2.4 Background of the Species Studied 38
 2.4.1 Taxonomy and Botany 38
 2.4.2 Ecological Distribution 40
 2.4.3 Morphological Characteristics 43

xv
2.4.4 Medicinal Properties and Uses of E. longifolia
2.4.5 Research and Development on E. longifolia
2.4.6 Threats to E. longifolia

3 MATERIALS AND METHODS
3.1 Site Description
3.1.1 Location of Study Area
3.1.2 Climatic Characteristics of Menchali Forest Reserve
3.1.3 Geology of the Area
3.1.4 Vegetation of the Study Sites
3.2 Site Design and Preparation
3.3 Study 1: Phytosociological (Vegetation) Survey
3.3.1 Measuring Vegetation Samples
3.3.2 Total Estimate of Coverage and sociability
3.3.3 Synthesis and Vegetation Classification
3.4 Study 2: Tree Species Composition
3.5 Study 3: Soil Properties and Light Intensity Study
3.6 Study 4: Foliar Nutrient Analysis
3.7 Statistical Analysis

4 RESULTS AND DISCUSSIONS
4.1 Introduction
4.2 Floristic Composition of Menchali Forest Reserves
4.2.1 Species Composition
4.2.2 Forest Composition at Different Abundance / Coverage of E. longifolia
4.2.3 Similarity of Species Composition among the Groups
4.2.4 Species Richness (R) of Different Forest Strata
4.2.5 Species Diversity (H’) of Different Forest Strata
4.2.6 Species Eveness (E) of Different Forest Strata
4.2.7 Comparison of Floristic Composition with Different Forest Types

4.3 Phytosociological Study
4.3.1 Forest Type
4.3.2 Common Families
4.3.3 Forest Communities
4.3.4 Profile Diagram of Vegetation Samples (Relevés)

4.4 Soil Properties
4.4.1 Physical Properties
4.4.2 Chemical Properties
4.4.3 Influence of Soil Physical Properties on Density of *E. longifolia*
4.4.4 Influence of Soil Chemical Properties on Density of *E. longifolia*

4.5 Foliar Nutrient Concentrations of *E. longifolia*
4.5.1 Foliar Macronutrient
4.5.2 Foliar Micronutrient
4.5.3 Relationship between Foliar Nutrient Concentration and Density of *E. longifolia*
4.5.4 Influence of Light Intensity on Coverage Density of *E. longifolia*

4.6 Relationship between Vegetation Distribution and Site Characteristics in Menchali Forest Reserves
4.6.1 Ordination of Vegetation Distributions along Gradient
4.6.2 Overlay on Soil Properties on Scatterplots of Vegetation Groupings
4.6.3 Soil Properties and Vegetation Distribution in Menchali Forest Reserve
4.6.4 Environmental Factors Influencing Distribution of *E. longifolia*

5 CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDICES

BIODATA OF THE AUTHOR
LIST OF TABLES

Table	Page
2.1 Status of seed production area (SPA) of *Eurycoma longifolia* in Peninsular Malaysia | 51 |
3.1 Location and observational climatic station of Menchali Forest Reserve | 65 |
3.2 Climatic parameters in Menchali Forest Reserve, Rompin, Pahang (1984-2002) | 66 |
3.3 Vegetation layers and the variables measured and the symbol used | 76 |
3.4 Total estimated cover and abundance | 77 |
3.5 Sociability levels | 78 |
4.1 The 20 most important families with their species and stem number | 94 |
4.2 Family distribution based on classification of stem number | 96 |
4.3 Top five ranking families of plant in term of number of genera in each releve at MFR | 98 |
4.4 Top five ranking families of plant in term of number of species in each releve at MFR | 98 |
4.5 List of exclusive species for each group | 101 |
4.6 Mean values of Pielou's evenness index (J') (±S.E.), ANOVA results (F) and P values of plant species belonging to the different forest layers (Dominant (T1), Understory (T2), Shrubs (S) and Herbs (H)) | 108 |
4.7 Comparison of tree species on Menchali Forest Reserve with Peninsular Malaysia and other lowland forests | 110 |
Summary of the phytosociology table

The community and sub-community in Group E3 and E4

The community and sub-community in Group E1 and E2

Summary of vegetation cover by groups in Relevés of 1.8 ha plot

Mean of vegetation cover by forest layers in 1.8 ha, Menchali Forest Reserve

Comparison of means between groups for soil physical properties (0-15 cm soil depth) and (15-30 cm soil depth)

Comparison of means between groups for soil chemical properties (0-15 cm soil depth) and (15-30 cm soil depth)

Comparison of means between groups for soil micronutrient properties (0-15 cm soil depth) and (15-30 cm soil depth).

Correlation coefficients between soil physical properties and coverage density of *E. longifolia*

Correlation coefficients between soil chemical properties and coverage density of *E. longifolia*

The mean values of nutrient concentrations in the foliage of trees and shrub layers of *E. longifolia* by each groups

Correlation coefficients between foliar nutrient and coverage density of *E. longifolia*

Summary of light intensity (Lux) data observed in this study taken during 17 – 22 Jan 2005 and 14 – 19 Feb 2005

Eigenvalues for ordination axes I and II from PCA and Pearson’s correlation coefficients between the ordination axes and species distribution from an ordination of samples (n=20) Menchali Forest Reserves
4.22 Eigenvalues for ordination axes I and II from PCA and Pearson's correlation coefficients between the ordination axes and 12 edaphic variables from an ordination of samples (n=20) Menchali Forest Reserves
<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Taxonomic hierarchy of Eurycoma longifolia</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of Eurycoma longifolia Seed Production Area in Peninsular Malaysia</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Eurycoma longifolia Jack photo</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of the study sites in Compartmen 6 and 10, Menchali Forest Reserve, Rompin, Pahang</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>The monthly temperature and humidity distribution pattern of Menchali Forest Reserve (1984 to 2002)</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Soil series map of Rompin District of Pahang</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Landsat TM image shows vegetation cover (dark green) surrounding Menchali Forest Reserve, Rompin</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Lay out of the 20 phytosociological relevés in Compartmen 6 and 10, Menchali Forest Reserve</td>
<td>71</td>
</tr>
<tr>
<td>3.6</td>
<td>Establishment of Phytosociological Relevés</td>
<td>72</td>
</tr>
<tr>
<td>3.7</td>
<td>Distribution and descriptions of releve based on coverage density of Eurycoma longifolia.</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>Phytosociological / vegetation samples (consists 36 sub-plots)</td>
<td>75</td>
</tr>
<tr>
<td>3.9</td>
<td>Flowchart of the entire synthesis procedure for relevé</td>
<td>80</td>
</tr>
<tr>
<td>3.10</td>
<td>Soil sampling using augers</td>
<td>84</td>
</tr>
<tr>
<td>3.11</td>
<td>Soil sampling for bulk density analysis</td>
<td>84</td>
</tr>
<tr>
<td>3.12</td>
<td>Foliar sampling</td>
<td>86</td>
</tr>
</tbody>
</table>
4.1 Percentage of life forms by community, Menchali Forest Reserve

4.2 The largest families in terms of genera and species

4.3 The ten most abundant species in the study area

4.4 Dendogram of similarity species among the groups

4.5 Mean values of species richness for different groups

4.6 Mean values of species diversity for the different groups

4.7 Profile diagram of Relevé HSM 01 (Group E1)

4.8 Profile diagram of Relevé HSM 07 (Group E2)

4.9 Profile diagram of Relevé HSM 14 (Group E3)

4.10 Profile diagram of Relevé HSM 19 (Group E4)

4.11 Mean of soil macronutrient elements between groups of relevé at different soil depth

4.12 Mean values patterns of macronutrients concentration for foliage E. longifolia and soil surface in Menchali Forest Reserve

4.13 Mean values patterns of micronutrients concentration for foliage E. longifolia and soil surface in Menchali Forest Reserve

4.14 Mean hourly variations in light intensity for density of Eurycoma longifolia in the study period

4.15 Principal Component Analysis ordination of 20 relevé based on vegetation distribution of 207 species.
Relationship between species code 073 (E. longifolia) with axis I and II

Principal Component Analysis (PCA) Ordination Jointplots of Soil Characteristics (arrow) in relation to Releve

Principal component Analysis ordination of 20 relevé based on vegetation distribution of 207 species. The diagram shows the distribution of vegetation. Vectors are sample-variable joint plots showing the relationship between soil variables and ordination scores (axes)