UNIVERSITI PUTRA MALAYSIA

TREE GROWTH AND FINANCIAL EVALUATION OF AGROFORESTRY SYSTEM IN KAMPUNG TEBUK PULAI, SABAK BERNAM, SELANGOR

JULSUN @ JOSEPH SIKUI.

FH 2005 4
TREE GROWTH AND FINANCIAL EVALUATION OF AGROFORESTRY SYSTEMS IN KAMPUNG TEBUK PULAI, SABAK BERNAM, SELANGOR

By

JULSUN @ JOSEPH SIKUI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2005
Specially Dedicated To My Late Mother, Angela Jingkiep Lojimoh

You Gave Me Life
Gave Me Your Heart
And Your Shoulder
When I Needed To Cry

You Gave Me Hope
When All My Hope Is Gone
Wings So My Dreams Can Fly

And I Haven't Told You Enough
Haven't Been Good Enough
Making You See.....

 My Love For You
 Will Live In My Heart
 Until Eternity's Through

 I See Your Smile
 In The Eyes Of My Child
 I Am Who I Am
 Mama Thanks To You

You Gave Me Your Word
Gave Me Your Voice
You Gave Me Everything

 Each Breath Of My Life
 You Believe, When I Can't Remember How
 You Teach My Faith To Survive

 And I Never Can Do Enough
 Never Thank You Enough
 For All That You Are

 I Know The Treasure
 I'm Filled With Grace
 Whenever I See Your Face
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

TREE GROWTH AND FINANCIAL EVALUATION OF AGROFORESTRY SYSTEMS IN KAMPUNG TEBUG PULAI, SABAK BERNAM, SELANGOR

By

JULSUN @ JOSEPH SIKUI

March 2005

Chairman: Professor Dato’ Nik Muhamad Nik Abd. Majid, PhD
Faculty: Forestry

A study was conducted at Kg. Tebug Pulai, Sabak Bernam, Selangor to assess the growth performance and financial aspects, evaluate the financial component and also to determine the optimum combination of agroforestry system practised by the farmers. There are three farms involved in the study with the holding size of two hectares each. The farms were planted with teak trees as the major component and practised different types of agroforestry system. This study involved collection of data on growth of teak and Tongkat Ali and other information obtained through informal interviews with the farmers. The results of this study are explained in terms of assessment on growth performance and financial aspects of three different agroforestry systems, evaluation of financial component and also determination of the optimum combination of agroforestry system. In terms of growth performance, the diameter and height growth of teak trees in the three farms are significantly different ($P \leq 0.05$). Trees in Farm C performed the best followed by trees in Farms A and B. Farms A and B had a total of 1122 and 2173 teak trees, respectively and most of the trees are in the diameter class ranging from 12-14cm for both farms. For Farm C, a total of 1651 teak trees were
recorded and most of them occurred in the diameter class range of 14-16cm. The total volume projected in Farms A, B and C is 111.9m³/ha, 92.2m³/ha, 120.6m³/ha with the mean growth of 17.4m, 16.4m and 20.0m, respectively. Similarly, the basal diameter and height of Tongkat Ali seedlings in Farm C were significantly higher (P ≤ 0.05) than those in Farm B. Farms B and C had 1522 and 1976 Tongkat Ali seedlings, respectively. Most of the seedlings in Farm B are in the basal diameter class range of 1.1-2.0cm with a total of 276.80kg of root weight and in Farm C most of the seedlings are in the basal diameter class range of 3.1-4.0cm with a root weight of 783.20kg. The project financial appraisal as “Type B With Project Approach” of Farm C was projected as the most economically viable project among the three farms giving the highest return to the farmer. The agroforestry system introduced under agrosilvopastoral in this farm (Scenario III) shows the IRR, NPV and B/C Ratio of 34.5%, RM150,100.91 and 1.12, respectively. If the project implemented as “Without Project Approach” and “Type A With Project Approach”, Farm C is still the most economically viable project. Although, the project implemented in Farms A and B offers another option, they are still considered economically viable to be implemented as the results are acceptable for project analysis requirement. Under Scenario I, Farm A shows the IRR, NPV and B/C Ratio of 19.9%, RM27,648.05 and 3.08, while Farm B has 23.6%, RM32,469.12 and 4.05, respectively. The farmers of Farms A and B will maximize the return at a 15-year rotation and the value are decreasing with the increases in the number of years.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERTUMBUHAN POKOK DAN PENAKSIRAN KEWANGAN SISTEM PERHUTANANTANI DI KAMPUNG TEBUK PULAI SABAK BERAM, SELANGOR

Oleh

JULSUN @ JOSEPH SIKUI

Mac 2005

Pengerusi: Prof. Dato' Nik Muhamad Nik Abd. Majid, PhD

Fakulti: Perhutanan

kelas diameter 12-14cm. Bagi Ladang C, sebanyak 1651 bilangan pokok direkodkan dan kebanyakkan berada dalam kelas diameter 14-16cm. Jumlah isipadu unjuran bagi Ladang A, B dan C adalah 111.9m³/ha, 92.2m³/ha, 120.6m³/ha dengan min pertumbuhan 17.4m, 16.4m dan 20.0m. Perbezaan diameter pangkal dan ketinggian anak pokok Tongkat Ali di Ladang C adalah sangat ketara (P ≤ 0.05) berbanding dengan ladang B. Sebanyak 1522 dan 1976 anak pokok Tongkat Ali direkodkan di Ladang B dan C. Kebanyakkan anak pokok di Ladang B adalah berada dalam kelas diameter pangkal 1.1-2.0cm dengan jumlah berat akar sebanyak 276.80kg dan di Ladang C, kebanyakkan anak pokok berada dalam kelas diameter pangkal 3.1-4.0 dengan jumlah berat akar sebanyak 783.20kg. Taksiran kewangan dengan "Pendekatan Jenis B dengan Projek" menunjukkan Ladang C adalah yang paling menguntungkan petani. Sistem perhutanantani-ternakan yang diperkenalkan di ladang ini (Gambaran III) menunjukkan IRR, NPV dan Nisbah B/C sebanyak 34.5%, RM150,100.91 dan 1.12. Sekiranya projek ini dijalankan dengan "Pendekatan Tanpa Projek" dan "Pendekatan Jenis A dengan Projek", Ladang C masih merupakan projek yang ekonomik. Sungguhpun projek yang diusahakan di Ladang A dan B adalah sebagai alternatif, ianya masih dianggap ekonomik untuk diusahakan kerana memenuhi syarat analisis kewangan projek. Bagi Gambaran I, Ladang A menunjukkan IRR, NPV dan Nisbah B/C sebanyak 19.9%, RM27,648.05 dan 3.08, manakala Ladang B mempunyai 23.6%, RM32,469.12 dan 4.05, masing-masing. Projek perhutanantani yang diusahakan petani diladang A dan B akan dapat memaksimumkan pulangan pada 15 tahun kitaran dan nilai pulangan ini akan susut dengan peningkatan bilangan tahun perlaksanaan.
Praise and thanksgiving to the LORD, GOD Almighty for HIS Bless, unfailing love and grace through the Holy Angels in guiding me to complete my Master of Science Thesis successfully.

This research effort has taken three years to complete and many people encourage me during the entire process. There were times when it seemed like I'd never get through it. However, with the persistence, discipline, dedication and a keen focus, it is finally complete. I want to acknowledge everyone who participated for their help and support, without which this research would never have been finished.

First and foremost, a heartfelt thanks goes to my dynamic and fantastic supervisor, Professor Dato' Dr. Nik Muhamad Nik Abd. Majid for his tremendous encouragement, feedback, guidance, criticisms and support that made it possible for me to successfully complete this study. My special thanks are extended to other members of the thesis committee, Dr. Ab. Rasip Ab. Ghani for his excellent and wonderful ideas, creative comments and assistance, and to Dr. Mohemad Azani Alias and also Kapt. Dr. Mohd. Zaki Hamzah for their incredible suggestions and supports during the entire course of the study.

My special thanks goes to the farmers; Hj. Jalani Bin Hj. Abdullah, Hj. Basran Bin Hj. Abd. Rahman, Hj. Mohd. Yakup Bin Hj. Thani and also to JPS Meteorological team in Sungai Besar, for their assistance, help and favour in one way or another in providing the information for the purpose of this study.

My sincere appreciation to Mr. Ong Tian Hock (FRIM), Mr. Dunstan Christopher Gissong, and Mr. Stephen Muk Tzer Chyi for their fortitude, warmth and help with data collection. Without their help in the field, it would have been impossible for me to complete this study.
A very special thanks to Mr. Claysius Raphael Kongoi for his tremendous and great moral support, concern and generous assistance in various ways through the study; a warm and special thanks to Mr. Frisco Nobilly who kindly assisted me in analyzing the data using SPSS software.

My deepest gratitude and affection also goes to my father, Mr. Sikui Molijip, my great brothers; Mr. Mailey, Mr. Noidy, Mr. Willy, Mr. Willon and Mr. Aaron and also to my wonderful sisters; Mdm. Margareth and Dr. Clarice and every member of my family for their support, patience, understanding, encouragement and consistent prayers throughout the course of my study in UPM.

I also acknowledge the many examples and citations people provided directly and indirectly by friends and organization. I may have neglected to mention others who helped along the way. If so, please accept my apologies, and know that you are appreciated.

Last but not least, I grateful acknowledge the award of the PASCA scholarship from UPM, which enable me to undertake this programme.

May the Blessed of GOD Almighty be with you all.
I certify that an Examination Committee met on 16th March 2005 to conduct the final examination of Julsun @ Joseph bin Sikui on his Master of Science thesis entitled "Tree Growth and Financial Evaluation of Agroforestry Systems in Kampung Tebuk Pulai, Sabak Bernam, Selangor" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Awang Noor Abd. Ghani, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Azmy Mohamed, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Khamurudin Mohd Noor, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Mahmud Abdul Wahab, PhD
Forest Research Institute of Malaysia
Kepong
Malaysia
(External Examiner)

GULAM RUSUL RAJMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 JUL 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Dato' Nik Muhamad Nik Abd. Majid, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Mohamed Azani Alias, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Capt. Mohd. Zaki Hamzah, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Ab. Rasip Ab. Ghani, PhD
Forest Plantation Programme
Forest Research Institute Malaysia (FRIM) Kepong
(Member)

[Signature]

AINI IDEGIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 AUG 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

JULSUN @ JOSEPH SIKUI

Date: 16 JULY 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General Background | 1 |
1.2 Statement of Problem | 5 |
1.3 Objectives of the Study | 8 |

2 REVIEW OF LITERATURE

2.1 Definition and Concept of Agroforestry | 10 |
2.2 Objectives and Advantages of Agroforestry Practises | 15 |
2.3 Problems and Constraints of Agroforestry Practises | 19 |
2.3.1 Environmental Constraints | 20 |
2.3.2 Socio-Economic Constraints | 21 |
2.3.3 Institutional Constraints | 22 |
2.4 Agroforestry Systems and Practises | 24 |
2.4.1 Indigenous Agroforestry Systems | 25 |
2.4.1.1 The Harmonic, Polycultural Swidden | 25 |
2.4.1.2 Accelerated Swidden System | 26 |
2.4.1.3 Farm and Grove System | 27 |
2.4.2 Modern Agroforestry Systems | 27 |
2.4.2.1 Agrisilvicultural System | 27 |
2.4.2.2 Silvopastural System | 28 |
2.4.2.3 Agrosilvopastoral System | 29 |
2.4.2.4 Agrosilvofishery System | 30 |
2.5 Agroforestry Systems in Malaysia | 30 |
2.6 Financial Assessment of Agroforestry Systems and Forest Plantation Projects | 44 |
2.7 Teak (Tectona grandis Linn.f.) | 49 |
2.7.1 Morphological, Silviculture and Management of Teak | 50 |
2.7.2 Edaphic Factors Affecting Growth of Teak | 52 |
2.7.3 Soil Chemical Properties for Optimum Growth of Teak 53
2.7.4 Teak Planting in Malaysia 55

3 MATERIALS AND METHODS
3.1 General Background 57
3.2 Location 58
 3.2.1 Experimental Area 58
 3.2.2 Topography and Soil 58
 3.2.3 Climate 60
3.3 Agroforestry System Component and Practises 61
 3.3.1 Agroforestry System and Practises in the Study Area 61
 3.3.2 System Component in Farm A 62
 3.3.3 System Component in Farms B and C 63
 3.3.4 Additional Component: Poultry Farming in Farm C 64
3.4 Assessment of Financial Aspects and Growth Performance of the Three Farms 73
3.5 Growth Projection of System Components for the Three Farms 77
 3.5.1 Growth Projection of Teak 77
 3.5.2 One-Way Analysis of Variance (ANOVA) for teak in Three Farms 79
 3.5.3 Statistical Analysis for Tongkat Ali in Two Farms 80
 3.5.4 Root Weight Projection of Tongkat Ali 80
3.6 Financial Analysis of Agroforestry Systems Practised 81
 3.6.1 Teak and Tongkat Ali Assumptions of the Financial Analysis for the Three Farms 85
 3.6.2 Sensitivity Analysis Assumption of the Financial Analysis for the Three Farms 86
3.7 Determination of the Optimum Combination of Agroforestry System Practised by the Farmers 88

4 RESULTS AND DISCUSSION
4.1 Growth Performance and Management Aspects of Systems Practised 91
 4.1.1 Density Distribution of Teak in the Study Sites 92
 4.1.1.1 Diameter Growth of Teak 92
 4.1.1.2 Height Class Distribution of Teak 97
 4.1.1.3 Volume Estimation of the Teak Trees for the Three Farms 102
 4.1.1.4 Growth Projection of Teak Trees for the Three Farms 106
 4.1.2 Distribution of Tongkat Ali in the Study Sites 110
4.1.2.1 Distribution of Tongkat Ali by Basal Diameter Class (cm) 110
4.1.2.2 Comparisons of Basal Diameter of Tongkat Ali for the Two Farms 111
4.1.2.3 Distribution and Comparison of Tongkat Ali by Height Class (m) for the Two Farms 113
4.1.2.4 Root Weight of Tongkat Ali for the Two Farms 115

4.2 Financial Aspects for the Three Farms 116
4.3 Financial Analysis of Agroforestry Systems Practised for the Three Farms 123
 4.3.1 Without Project Approach (Farm A) 124
 4.3.1.1 Without Project Approach of Farm A (Scenario I) 124
 4.3.1.2 Without Project Approach of Farm A (Scenario II) 125
 4.3.1.3 Without Project Approach of Farm A (Scenario III) 126
 4.3.1.4 Financial Appraisal of Farm A 127
 4.3.1.5 Sensitivity Analysis of Farm A 128
 4.3.1.6 Cost Analysis of Farm A 130
 4.3.2 With Project Approach – Type A (Farm B) 133
 4.3.2.1 Type A With Project Approach of Farm B (Scenario I) 133
 4.3.2.2 Type A With Project Approach of Farm B (Scenario II) 134
 4.3.2.3 Type A With Project Approach of Farm B (Scenario III) 135
 4.3.2.4 Financial Appraisal of Farm B 136
 4.3.2.5 Sensitivity Analysis of Farm B 139
 4.3.2.6 Cost Analysis of Farm B 143
 4.3.3 With Project Approach – Type B (Farm C) 145
 4.3.3.1 Type B With Project Approach of Farm C (Scenario I) 145
 4.3.3.2 Type B With Project Approach of Farm C (Scenario II) 146
 4.3.3.3 Type B With Project Approach of Farm C (Scenario III) 147
 4.3.3.4 Financial Appraisal of Farm C 148
 4.3.3.5 Sensitivity Analysis of Farm C 150
 4.3.3.6 Cost Analysis of Farm C 158

4.4 Determination of the Optimum Combination of Agroforestry System Practised by the Farmers 160
 4.4.1 Project Financial Appraisal comparisons as "Without Project Approach" 160
 4.4.2 Project Financial Appraisal Comparisons as "With Project Approach" 162
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Gross Domestic Product (RM Million) of agriculture and forestry activity in purchaser' values, at 1987 prices, Malaysia, 1990, 1998 – 2000</td>
</tr>
<tr>
<td>1.2</td>
<td>Distribution and extent of major forest types in Malaysia 2003 (Million ha.)</td>
</tr>
<tr>
<td>1.3</td>
<td>Permanent Reserved Forest (PRFs) in Malaysia 2003 (Million ha.)</td>
</tr>
<tr>
<td>3.1</td>
<td>Baseline financial information of the study sites</td>
</tr>
<tr>
<td>3.2</td>
<td>Diameter (cm) and Height (m) classes of teak</td>
</tr>
<tr>
<td>3.3</td>
<td>Basal Diameter (cm) and Height (m) classes of Tongkat Ali</td>
</tr>
<tr>
<td>4.1</td>
<td>Total number of teak trees by diameter class for the three farms</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of teak trees by diameter class for the three farms</td>
</tr>
<tr>
<td>4.3</td>
<td>Total number of teak trees by height class for the three farms</td>
</tr>
<tr>
<td>4.4</td>
<td>Percentage of teak trees by height class for the three farms</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth parameters for teak trees by farm</td>
</tr>
<tr>
<td>4.6</td>
<td>Total number of Tongkat Ali seedlings by basal diameter class for the two farms</td>
</tr>
<tr>
<td>4.7</td>
<td>Percentage distribution of Tongkat Ali seedlings by basal diameter class for the two farms</td>
</tr>
<tr>
<td>4.8</td>
<td>Total number of Tongkat Ali seedlings by height class for the two farms</td>
</tr>
<tr>
<td>4.9</td>
<td>Percentage distribution of Tongkat Ali seedlings by height class for the two farms</td>
</tr>
<tr>
<td>4.10</td>
<td>Financial aspects of three systems practised by the farmers in Kg. Tebuk Pulai, Sabak Bernam, Selangor</td>
</tr>
<tr>
<td>4.11</td>
<td>Total Projected financial revenue for the three farms</td>
</tr>
</tbody>
</table>
4.12 Total projected financial cost for the three farms

4.13 Projected net cash flow for the three farms

4.14 Farm A project financial appraisal at 10 percent discounting rate as "Without Project Approach"

4.15 Net Present Value (NPV) for sensitivity analysis of teak at 10 percent discounting rate (RM'000) for farm A

4.16 Internal Rate of Return (IRR) for sensitivity analysis of teak at 10 Percent discounting rate (Value in %) for farm A

4.17 Benefit-Cost Ratio (B/C Ratio) for sensitivity analysis of teak at 10 percent discounting rate for farm A

4.18 The total costs projected for the project in farm A (Based on the project implemented in 2.0 hectares)

4.19 Farm B project financial appraisal at 10 percent discounting rate with "Type A With Project Approach"

4.20 Net Present Value (NPV) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate (RM'000) for farm B

4.21 Internal Rate of Return (IRR) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate (Value in %) for farm B

4.22 Benefit-Cost Ratio (B/C ratio) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate for farm B

4.23 Net Present Value (NPV) for sensitivity analysis of Tongkat Ali with seedlings cost at 10 percent discounting rate (RM'000) for farm B

4.24 Internal Rate of Return (IRR) for sensitivity analysis of Tongkat Ali with seedlings cost at 10 percent discounting rate (Value in %) For farm B

4.25 Benefit-Cost Ratio (B/C Ratio) for sensitivity analysis of Tongkat Ali with seedlings cost at 10 percent discounting rate for farm B

4.26 The total costs incurred and projected for the projects in farm B (Based on the project implemented in 2.0 hectares)

4.27 Farm C project financial appraisal at 10 percent discounting rate as "Type B With Project Approach"
4.28 Net Present Value (NPV) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate (RM’000) for Farm C

4.29 Internal Rate of Return (IRR) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate (Value in %) for Farm C

4.30 Benefit-Cost Ratio (B/C Ratio) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate for Farm C

4.31 Net Present Value (NPV) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate (RM’000) for Farm C

4.32 Internal Rate of Return (IRR) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate (value in %) for Farm C

4.33 Benefit-Cost Ratio (B/C Ratio) for sensitivity analysis of Tongkat Ali at 10 percent discounting rate for Farm C

4.34 Net Present Value (NPV) for sensitivity analysis of poultry farming at 10 percent discounting rate (RM’000) for Farm C

4.35 Internal Rate of Return (IRR) for sensitivity analysis of poultry farming at 10 percent discounting rate (Value in %) for Farm C

4.36 Benefit-Cost ratio (B/C Ratio) for sensitivity analysis of poultry farming at 10 percent discounting rate for Farm C

4.37 The total costs incurred for the projects in farm C (Based on the project implemented in 2.0 hectares)

4.38 Project Financial Appraisal at 10 percent discounting rate of farm A, as “Without Project Approach”

4.39 Project financial appraisal at 10 percent discounting rate of farm B as “Without Project Approach”

4.40 Project financial appraisal at 10 percent discounting rate of farm C as “Without Project Approach”

4.41 Project financial appraisal at 10 percent discounting rate of farm B as “Type A With Project Approach”

4.42 Project financial appraisal at 10 percent discounting rate of farm C as “Type A With Project Approach”

4.43 The ranking of the scenarios of the project financial appraisal for three farms
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Conceptual framework of an interface between agriculture and forestry in tropical developing countries</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Map showing location of the study area</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Rainfall distribution (mm) in Sungai Besar JPS Meteorological Station for a year 2001</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Layout of teak trees during establishment in 1994 for the three farms</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Layout for farm A after teak planting in 1994</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>Layout for farms B and C after $4\frac{1}{2}$ years of teak planting</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Layout of farm A when teak was 9 years old</td>
<td>66</td>
</tr>
<tr>
<td>3.7</td>
<td>Layout of farm B when teak was 9 years old</td>
<td>67</td>
</tr>
<tr>
<td>3.8</td>
<td>Layout of farm C when teak was 9 years old</td>
<td>68</td>
</tr>
<tr>
<td>3.9</td>
<td>Height measurement of teak tree</td>
<td>74</td>
</tr>
<tr>
<td>3.10</td>
<td>Basal diameter measurement of Tongkat Ali with callipers</td>
<td>76</td>
</tr>
<tr>
<td>3.11</td>
<td>Framework for appropriate financial appraisal comparisons of the farms in three different scenarios</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>Diameter class distribution of teak trees for the three farms</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Height class distribution of teak trees for the three farms</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>Site index guide curve with value estimated for teak trees at the base age of 10 years old for farm A</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Site index guide curve with value estimated for teak trees at the base age of 10 years old farm B</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Site index guide curve with value estimated for teak trees at the base age of 10 years old farm C</td>
<td>109</td>
</tr>
<tr>
<td>4.6</td>
<td>Basal diameter distribution of Tongkat Ali in farms B and C</td>
<td>112</td>
</tr>
<tr>
<td>4.7</td>
<td>Height distribution of Tongkat Ali in farms B and C</td>
<td>114</td>
</tr>
<tr>
<td>4.8</td>
<td>Root weight distribution of Tongkat Ali in farms B and C</td>
<td>115</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>B/C Ratio</td>
<td>Benefit-Cost Ratio</td>
<td></td>
</tr>
<tr>
<td>CATIE</td>
<td>Tropical Agricultural Research and Higher Education Center</td>
<td></td>
</tr>
<tr>
<td>DBH</td>
<td>Diameter at Breast Height</td>
<td></td>
</tr>
<tr>
<td>FDSM</td>
<td>Forestry Department of Sabah</td>
<td></td>
</tr>
<tr>
<td>FELCRA</td>
<td>Federal Land Consolidation and Rehabilitation Authority</td>
<td></td>
</tr>
<tr>
<td>FELDA</td>
<td>Federal Land Development Authority</td>
<td></td>
</tr>
<tr>
<td>FRI</td>
<td>Forest Research Institute</td>
<td></td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institute Malaysia</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
<td></td>
</tr>
<tr>
<td>ICRAF</td>
<td>The International Center for Research in Agroforestry</td>
<td></td>
</tr>
<tr>
<td>INB</td>
<td>Incremental Net Benefit</td>
<td></td>
</tr>
<tr>
<td>IRR</td>
<td>Internal Rate of Return</td>
<td></td>
</tr>
<tr>
<td>JPS</td>
<td>Drainage and Irrigation Department</td>
<td></td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agricultural Research and Development Institute</td>
<td></td>
</tr>
<tr>
<td>MIRA</td>
<td>Manejo de Información sobre Recursos Arbóreas</td>
<td></td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysia Palm Oil Board</td>
<td></td>
</tr>
<tr>
<td>MPTS</td>
<td>Multipurpose Tree Species</td>
<td></td>
</tr>
<tr>
<td>NAP3</td>
<td>The Third National Agricultural Policy</td>
<td></td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
<td></td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
<td></td>
</tr>
<tr>
<td>PBP</td>
<td>Pay Back Period</td>
<td></td>
</tr>
<tr>
<td>RISDA</td>
<td>Rubber Industry Smallholder Development Authority</td>
<td></td>
</tr>
<tr>
<td>RRIM</td>
<td>Rubber Research Institute Malaysia</td>
<td></td>
</tr>
<tr>
<td>SALT</td>
<td>Slopping Agricultural Land Technology</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Background

Malaysia is one of the most successful developing countries in the world. One of the major contributors to economic development of the country is the agriculture and forestry sectors. These sectors have been the driving force behind the economic growth of the country over the last four decades. It was used to finance the development of the country, which progressively led to the transformation of the economy towards industrialization. In terms of gross domestic product (GDP) in purchaser’s values at 1987 prices, for a year 1990, 1998 to 2000, agricultural sector component still one of the major contributor to the country’s economic revenues with trend increasing consistently (Table 1.1).

This country is blessed with relatively large tracts of natural forest which is a highly complex ecosystem and is considered as having a very rich biodiversity. This has made the forestry sector one of the top foreign exchange earners for Malaysia, and there is a growing awareness of the vital role forestry is playing in the socio-economic development and environmental protection of the country.
Table 1.1: Gross Domestic Product (RM Million) of Agriculture and Forestry Activity in Purchaser's Values, At 1987 Prices, Malaysia, 1990–2000

<table>
<thead>
<tr>
<th>Item</th>
<th>1990</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture and Livestock Production</td>
<td>10,579</td>
<td>11,531</td>
<td>12,422</td>
<td>12,226</td>
</tr>
<tr>
<td>Forestry and Logging</td>
<td>5,194</td>
<td>3,648</td>
<td>3,237</td>
<td>3,092</td>
</tr>
<tr>
<td>Fishing</td>
<td>1,534</td>
<td>2,236</td>
<td>2,335</td>
<td>2,369</td>
</tr>
<tr>
<td>GDP in Purchasers' Values</td>
<td>105,977</td>
<td>182,219</td>
<td>192,712</td>
<td>209,365</td>
</tr>
<tr>
<td>Agricultural Sector Component</td>
<td>17,307</td>
<td>17,415</td>
<td>17,994</td>
<td>17,887</td>
</tr>
<tr>
<td>Agricultural Sector Component in Percentage</td>
<td>16.3</td>
<td>9.6</td>
<td>9.3</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Rapid population growth in the country has undoubtedly posed many socio-economic and environmental problems causing unabated need for food, fodder, energy and wood. Thus, there exists an increasing pressure on the two main renewable resources that is forestry and agriculture which are related in many aspects but apparently, incapable of meeting the increasing demand even though there is functional allocation of land for both purposes. Such problems, coupled with urbanization, industrialization and other aspects of socio-economic development, resulted in rapid deforestation leading to serious degradation of the ecosystem and diminution of arable land areas. Moreover, there also exists land use conflict between agriculture and forestry, amidst the need for rural development and growing environmental issues.

Agriculture and forestry sectors are also facing major rural land use challenges, including increasing scarcity of timber products and
environmental degradation on fragile lands. In 2000, the total export value of wood and wood-based products was RM17.6 billion or 4.7 percent of the country's total export value (Anonymous, 2001). Further exploitation of forest land area also contributed to environmental issues such as decreasing in the total number of natural forest lands. Tables 1.2 and 1.3 shows the remaining

Table 1.2: Distribution and Extent of Major Forest Types in Malaysia 2003 (Million ha.)

<table>
<thead>
<tr>
<th>Region</th>
<th>Land Area</th>
<th>Dipterocarp Forest</th>
<th>Swamp Forest</th>
<th>Mangrove Forest</th>
<th>Plantation Forest</th>
<th>Total Forest Land</th>
<th>Percentage Total of Forest Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peninsular Malaysia</td>
<td>13.16</td>
<td>5.40</td>
<td>0.30</td>
<td>0.10</td>
<td>0.08</td>
<td>5.88</td>
<td>44.70</td>
</tr>
<tr>
<td>Sabah</td>
<td>7.37</td>
<td>3.83</td>
<td>0.12</td>
<td>0.34</td>
<td>0.11</td>
<td>4.40</td>
<td>59.70</td>
</tr>
<tr>
<td>Sarawak</td>
<td>12.30</td>
<td>7.92</td>
<td>1.12</td>
<td>0.14</td>
<td>0.06</td>
<td>9.24</td>
<td>75.10</td>
</tr>
<tr>
<td>Malaysia</td>
<td>32.83</td>
<td>17.15</td>
<td>1.54</td>
<td>0.58</td>
<td>0.25</td>
<td>19.52</td>
<td>59.50</td>
</tr>
</tbody>
</table>

Table 1.3: Permanent Reserved Forest (PRFs) in Malaysia 2003 (Million ha.)

<table>
<thead>
<tr>
<th>Region</th>
<th>Protection Forest</th>
<th>Production Forest</th>
<th>Total Land Area Under PFE</th>
<th>Percentage of Total Land Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peninsular Malaysia</td>
<td>1.52</td>
<td>3.18</td>
<td>4.70</td>
<td>35.70</td>
</tr>
<tr>
<td>Sabah</td>
<td>0.59</td>
<td>3.00</td>
<td>3.59</td>
<td>48.70</td>
</tr>
<tr>
<td>Sarawak</td>
<td>1.10</td>
<td>5.00</td>
<td>6.10</td>
<td>49.60</td>
</tr>
<tr>
<td>Malaysia</td>
<td>3.21</td>
<td>11.18</td>
<td>14.39</td>
<td>43.80</td>
</tr>
</tbody>
</table>

distribution and extent of major forest types and permanent reserved forest in
Malaysia. In order to protect and avoid further exploitation of the remaining
forest land, action plan have to be considered to develop better solution for
land development strategies.

One of the responses to these problems is the development and promotion of
agroforestry practise to be implemented in the country. Agroforestry, which
integrates forest management, food crop production and environmental
conservation appears to be a promising alternative system of land use. The
objective of agroforestry is to maximize land usage and economic return
especially to the rural communities (Wan Razali and Abd. Razak, 1987), and
reducing shifting cultivation in Permanent Forest Estate (Morningstar and
Knight, 1990).

In general, agroforestry as it is being researched and practised today is not
new but it is a modification of systems that have been used by farmers for
hundreds of years. In Malaysia it has been practised on a trial basis since
1930 and it was only being encouraged since the Fourth Malaysian Plan
(1981-1985), due to the realization of the importance of both agriculture and
forestry sectors (Nor Aini and Jalil, 1989).