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This thesis describes the development of an experimental facility of a tangential jet 

flow in a sudden expansion channel. The present study is intended to clarify 

experimentally the relation between flow and geometrical variables on the thermal 

development using a point wise temperature measurements technique. The 

temperature measurements have been conducted on a flat plate inside a low speed 

open circuit wind tunnel. The mainstream flow has a maximum of temperature 

50" C. The temperature was controlled by a 10 kVA/40 Ampere voltage regulator. 

A maximum velocity, (urn) at the mainstream intake is 10 d s .  The velocity on the 

coolant jet flow (u,) is between 2 m/s to 8 mls, the expansion ratio (ER) is 1.2 and 

the Reynolds numbers, ( ~ e , )  is, 1.3 x 1 o5 on the mainstream location. The coolant 

distribution system is fabricated into three type of geometry: a slot shape 20 

mm2 1 mm , a square shape 10 mm x 10 rnm and a circular shape 10 mm of diameter. 

The surface temperature in the direction of the jet flow media is evaluated based on 



the measured temperatures, obtained through the thermocouples over the flat 

surfaces. The jet flow is tangentially injecting a jet of cooling air at an exit angle of 

0" from the coolant distribution system to the plate surface. The test plate is made 

of plastic material (acrylonitrile butadiene stryrene) plate of 10 mm thick flat plate 

which is installed on the channel wall and instrumented with a stream wise row of T- 

type thermocouples. The thermocouples are spaced 25.4 mm apart along the center 

line of the plate. The temperature ratio between the cooling air temperature (T,) and 

T 
the mainstream temperature (T,) is in the range of 0.77 5 1 0.87 while the 

T, 

velocity ratio between the cooling velocity (u,) and mainstream velocity (u,) is in 

range of 0.2 5 3 5 0.7. From the observation made at the location X - 0.5, the X -  
cooling effectiveness ( r )  for tangential jet flow emanating from the slot, square and 

circular holes geometry, is to be at maximum value of 0.8, 0.6, and 0.5 respectively. 

The data presented here would be off interest to engineers to gain further 

understanding in the development of heat transfer due to tangential jet flow in a 

sudden expansion channel. 
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Tesis ini menerangkan pembangunan peralatan ujikaji untuk aliran jet tangen dalam 

alur pengembangan mendadak. Kajian ini Iebih tertumpu untuk menjelaskan 

perhubungan antara aliran dan pelbagai bentuk geometri terhadap pembangunan 

haba dengan menggunakan teknik pengukuran suhu secara titik. Pengukuran suhu 

telah dijalankan ke atas plat rata didalarn terowong angin litar terbuka berhalaju 

rendah. Arus aliran tersebut mempunyai bacaan suhu maximum 50" C dengan suhu 

dikawal oleh pembolehubah voltan 10 kVAI40 Ampere. Halaju maksimum (Urn) 

arus pada salur masuk adalah 10 mls. Halaju pada aliran jet (u,) adalah diantara 2 

mls hingga 8 mls. Nisbah pengembangan (ER) iaIah 1.2 dan nombor Reynolds 

( ~ e , )  bernilai 1.3 x 1 o5 pada lokasi arus. Sistem pengagihan pendiginan di 

fabrikasi kepada tiga jenis bentuk geometri: bentuk Iubang a h r  20 mm2 lmm,  

bentuk segiempat sama 10 mm x 10 mm dan bentuk bulat berdiameter 10 mm. Suhu 

permukaan dalam arah aliran jet adalah dinilai berdasarkan suhu pengukuran yang 



diambil menerusi pengganding suhu menerusi permukaan plat rata. Aliran jet 

disuntik kepada permukaan plat secara tangen pada sudut keluar 0" dari sistem 

pengagihan pendinginan. Plat ujian dibuat daripada bahan plastik (acrylonitrile 

butadiene stryrene) yang berukuran 10 mm tebal di mana plat ini dipasang pada 

saluran dinding dan dilengkapi dengan pengganding suhu jenis-T yang ditanam 

sepanjang plat rata tersebut. Setiap pengganding suhu dijarakan sebanyak 25.4 mm 

dibahagian tengah sepanjang plat tersebut. Nisbah suhu di antara suhu udara 

pendinginan (q )  dan suhu aliran utama (T,) adalah di dalam julat 0.77 5 2 < 0.87 
T, 

manakala nisbah halaju di antara halaju pendinginan (u,) dan hslaju aliran utama 

(u,) adalah didalam julat 0.2 5 1' < 0.7 . Melalui pemerhatian yang dibuat pada 
urn 

lokasi X/;I = 0.5 keberkesanan pendinginan ( r l )  bagi aliran jet tangen yang 

mengalir dari lubang yang bergeometri masing-masing: lubang alur, lubang-lubang 

bergeometri segiempat sama dan lubang-lubang bergeometri bulat adalah pada nilai 

maksimum 0.8, 0.6 dan 0.5. Data yang dibandingkan di sini akan menarik minat 

para jumtera untuk lebih memahami dalam pembangunan pemindahan haba 

berdasarkan aliran jet tangen dalam alur pengembangan mendadak. 
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