

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF AN EXPERIMENTAL FACILITY FOR MEASUREMENT OF TANGENTIAL JET FLOW IN A SUDDEN EXPANSION CHANNEL

IRFAN BIN ABD RAHIM.

FK 2006 2

DEVELOPMENT OF AN EXPERIMENTAL FACILITY FOR MEASUREMENT OF TANGENTIAL JET FLOW IN A SUDDEN EXPANSION CHANNEL

By

IRFAN BIN ABD RAHIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2006

Lillahi Taala

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

DEVELOPMENT OF AN EXPERIMENTAL FACILITY FOR MEASUREMENT OF TANGENTIAL JET FLOW IN A SUDDEN EXPANSION CHANNEL

By

IRFAN BIN ABD RAHIM

February 2006

Chairman: Abdul Aziz bin Jaafar, PhD

Faculty: Engineering

This thesis describes the development of an experimental facility of a tangential jet flow in a sudden expansion channel. The present study is intended to clarify experimentally the relation between flow and geometrical variables on the thermal development using a point wise temperature measurements technique. The temperature measurements have been conducted on a flat plate inside a low speed open circuit wind tunnel. The mainstream flow has a maximum of temperature 50° C. The temperature was controlled by a 10 kVA/40 Ampere voltage regulator. A maximum velocity, (U_{∞}) at the mainstream intake is 10 m/s. The velocity on the coolant jet flow (U_i) is between 2 m/s to 8 m/s, the expansion ratio (ER) is 1.2 and the Reynolds numbers, (Re_{∞}) is, 1.3×10^5 on the mainstream location. The coolant distribution system is fabricated into three type of geometry: a slot shape 20 mm^2/mm , a square shape 10 mm x 10 mm and a circular shape 10 mm of diameter. The surface temperature in the direction of the jet flow media is evaluated based on

the measured temperatures, obtained through the thermocouples over the flat surfaces. The jet flow is tangentially injecting a jet of cooling air at an exit angle of 0° from the coolant distribution system to the plate surface. The test plate is made of plastic material (acrylonitrile butadiene stryrene) plate of 10 mm thick flat plate which is installed on the channel wall and instrumented with a stream wise row of Ttype thermocouples. The thermocouples are spaced 25.4 mm apart along the center line of the plate. The temperature ratio between the cooling air temperature (T_i) and the mainstream temperature (T_{∞}) is in the range of $0.77 \le \frac{T_{\ell}}{T_{\infty}} \le 0.87$ while the velocity ratio between the cooling velocity (U_i) and mainstream velocity (U_{∞}) is in range of $0.2 \le \frac{U_t}{U_s} \le 0.7$. From the observation made at the location $\frac{X}{h} = 0.5$, the cooling effectiveness (η) for tangential jet flow emanating from the slot, square and circular holes geometry, is to be at maximum value of 0.8, 0.6, and 0.5 respectively. The data presented here would be off interest to engineers to gain further understanding in the development of heat transfer due to tangential jet flow in a sudden expansion channel.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Master Sains

PEMBANGUNAN SEBUAH KEMUDAHAN UJIKAJI UNTUK PENGUKURAN ALIRAN JET TANGEN DALAM ALUR PENGEMBANGAN MENDADAK

Oleh

IRFAN BIN ABD RAHIM

Febuari 2006

Pengerusi: Abdul Aziz Bin Jaafar, PhD

Fakulti: Kejuruteraan

Tesis ini menerangkan pembangunan peralatan ujikaji untuk aliran jet tangen dalam alur pengembangan mendadak. Kajian ini lebih tertumpu untuk menjelaskan perhubungan antara aliran dan pelbagai bentuk geometri terhadap pembangunan haba dengan menggunakan teknik pengukuran suhu secara titik. Pengukuran suhu telah dijalankan ke atas plat rata didalam terowong angin litar terbuka berhalaju rendah. Arus aliran tersebut mempunyai bacaan suhu maximum 50° C dengan suhu dikawal oleh pembolehubah voltan 10 kVA/40 Ampere. Halaju maksimum (U_{∞}) arus pada salur masuk adalah 10 m/s. Halaju pada aliran jet (U_t) adalah diantara 2 m/s hingga 8 m/s. Nisbah pengembangan (ER) ialah 1.2 dan nombor Reynolds (Re_{∞}) bernilai 1.3×10^5 pada lokasi arus. Sistem pengagihan pendiginan di fabrikasi kepada tiga jenis bentuk geometri: bentuk lubang alur 20 mm^2/mm , bentuk segiempat sama 10 mm x 10 mm dan bentuk bulat berdiameter 10 mm. Suhu permukaan dalam arah aliran jet adalah dinilai berdasarkan suhu pengukuran yang

V

diambil menerusi pengganding suhu menerusi permukaan plat rata. Aliran jet disuntik kepada permukaan plat secara tangen pada sudut keluar 0° dari sistem pengagihan pendinginan. Plat ujian dibuat daripada bahan plastik (acrylonitrile butadiene stryrene) yang berukuran 10 mm tebal di mana plat ini dipasang pada saluran dinding dan dilengkapi dengan pengganding suhu jenis-T yang ditanam sepanjang plat rata tersebut. Setiap pengganding suhu dijarakan sebanyak 25.4 mm dibahagian tengah sepanjang plat tersebut. Nisbah suhu di antara suhu udara pendinginan (T_t) dan suhu aliran utama (T_{∞}) adalah di dalam julat $0.77 \le \frac{T_t}{T} \le 0.87$ manakala nisbah halaju di antara halaju pendinginan (U_i) dan halaju aliran utama (U_{∞}) adalah didalam julat $0.2 \le \frac{U_t}{U_{\infty}} \le 0.7$. Melalui pemerhatian yang dibuat pada lokasi $\frac{X}{h} = 0.5$ keberkesanan pendinginan (η) bagi aliran jet tangen yang mengalir dari lubang yang bergeometri masing-masing: lubang alur, lubang-lubang bergeometri segiempat sama dan lubang-lubang bergeometri bulat adalah pada nilai maksimum 0.8, 0.6 dan 0.5. Data yang dibandingkan di sini akan menarik minat para jurutera untuk lebih memahami dalam pembangunan pemindahan haba berdasarkan aliran jet tangen dalam alur pengembangan mendadak.

ACKNOWLEDGEMENTS

First and foremost, all praise and thanks giving to Allah the Almighty, for gracing me with strength to complete of my thesis. Alhamdullilah.

I am greatly indebted to my supervisor Dr Abdul Aziz Bin Jaafar for his guidance and friendship throughout my graduate work. He is very helpful and supportive and his continuous encouragement has made me work hard. Dr Abdul Aziz Bin Jaafar has been a continual source of inspiration and helped me to make the thesis a reality.

Much credit must also be given to committee members, Prof Madya Dr Megat Mohammad Hamdan Bin Megat Ahmad and Dr Abd Rahim Bin Abu Talib for their guidance, advice and encouragement throughout the completion of my thesis. To En Ropiee Bin Mat, I would like to extend special word of thanks for his support and guidance to provide valuable information during my thesis completion.

I am forever in debt to my parents for their dedication and continuous prayer throughout my whole life. Over the past years, their guidance, care and love has been undoubtedly indispensable. I would also like to acknowledge my beloved wife, Haryanti for her love, smiles and encouragement. Her warm support and company has helped me through the difficult time. Word is not sufficed to express it. To my little hero, Mohd Izzudin Al-Qasimi you always make me busy at home. All tiredness during work will disappear when I see your smile and laughter. I would also like to express my appreciation towards my family, relatives and member at aerodynamics lab. Special thanks to Prof Ir. Dr. Shahnor bin Basri for his motivation.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APROVAL	viii
DECLARATION	х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	ХХ

CHAPTER

1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	6
	1.3 Aims and Objective of the Study	7
	1.4 Layout of Thesis	8
	1.5 Contribution of Work	9

2	LII	FERAT	URE REVIEW	10
	2.1	Introdu	action	10
	2.2	Introdu	action to Film Cooling	10
		2.2.1	Types of Film Cooling	11
	2.3	Coolin	g Techniques in a Sudden Expansion Channel	14
		2.3.1	Backward-Facing Step Flow	15
		2.3.2	Normal Jet Flow	18
		2.3.3	Tangential Jet Flow	25
	2.4	Conclu	ision	31

3	DESIGN C	CONSIDERATION	36
	3.1 Introdu	action	36
	3.2 Dimen	sional analysis	36
	3.3 Experi	mental Rig	45
	3.4 Design	and Fabrication of the Experimental Rig	48
	3.4.1	Air Blower	48
	3.4.2	Turbulence Reduction Screens	53
	3.4.3	Primary Diffuser Duct (X2)	54
	3.4.4	Settling Chamber (X3)	56
	3.4.5	Primary Contraction Ducts (X4)	56
	3.4.6	Heater Section	58
	3.4.7	Working Section	62

3.5	Flow Me	easuring Equipment and Measurements	69
	3.5.1	Pressure Acquisition System	69
	3.5.2	Pressure Profile Measurement for Mainstream Intake	70
	3.5.3	Air Speed at the Injection Hole	71
	3.5.4	Mass Flow Rate Measurement	73
3.6	Thermal	Field Measuring Instruments and Measurements	75
	3.6.1	Temperature Measuring Equipments and Measurements	75
3.7	Derived	Fluid, Flow and Thermodynamic Properties	78
	3.7.1	Resultant velocity, V	79
	3.7.2	Air density, ρ	79
	3.7.3	Kinematics Viscosity, v	80
3.8	Conclusi	ion	80

METHODOLOGY	82
4.1 Introduction	82
4.2 Flow Test Procedures	82
4.3 Thermal Test Procedures	86
4.4 Flow Measurements in the Experimental Rig	90
4.4.1 Boundary Layer Measurement and Profile	90
4.4.2 Pressure Distribution at the Inlet of Mainstream Channel	91
4.5 Conclusion	92

4

5

6

6.2 Conclusion

6.2.1

6.2.2

RESULTS	AND DISCUSSION	94
5.1 Introdu	action	94
5.2 Refere	nce Thermal Condition in the Working Section	94
5.2.1	Temperature of the Mainstream Flow, T_{∞}	95
5.2.2	Temperature of the Tangential Jet Flow, Tt	96
5.2.3	Temperature Measurement on the Test Plate for	
	Isothermal Flow	100
5.3 Therm	al Analysis of the Tangential Jet Flow in a Sudden	
Expan	sion Channel	102
5.3.1	Slot Injection Hole (20mm x 230mm)	103
5.3.2	Square Injection Hole (10mm x 10mm)	112
5.3.3	Circular Injection Hole (10mm Diameter)	119
5.3.4	Parametric Study	129
5.4 Discussion of Experimental Result		136
5.5 Conclusion		137
CONCLU	SION AND RECOMMENDATIONS	141
6.1 Introdu	action	141

UPM	(66)

141

142

143

144

Design and Development of the Experimental Facilities

Experiments on Cooling Effectiveness of the

Tangential Jet Flow

6.3 Recommendation for Future Work

REFERENCES	146
APPENDICES	151
BIODATA OF THE AUTHOR	225

Table		Page
2.1	Summary of previous research work on a film cooling technique in a sudden expansion channel	33
3.1	Table of the geometrical variables	37
3.2	Table of kinematics variables	37
3.3	Table of dynamic variables	38
3.4	Table of thermal variables	38
3.5	Components of the heat transfer facility	47
3.6	Geometrical properties of the injection hole insert	68
4.1	Instrument errors for measuring channels stations 1 to 19 on the test plate	89
4.2	Tabulated data of the boundary layer profile	91

LIST OF TABLES

LIST OF FIGURES

Figure		Page
1.1	Schematics of a typical turbojet engine (reproduced from Rolls-Royce)	1
1.2	Turbojet cycle performances and for various turbine entry temperatures (reproduced from Cohen et al 1996)	3
1.3	Blade destruction due to high turbine entry temperature (reproduced from Rolls-Royce, 1973)	4
1.4	Combine internal and external cooling technique for a turbine blade (reproduced from Rolls Royce, 1973)	6
1.5	The phenomenology of secondary flow and applied on backward-facing step flow (Lukachko et al 2003)	7
2.1	Schematics of film cooling concept (Han and Ekkad, 1998)	13
2.2	Nature of flow filed with film cooling (Lakshminarayana, 1996)	14
2.3	Streamlines demonstrating flow features down stream from step (s=0.01m)	16
2.4	Streamlines on a y-plane close to the stepped wall (y/s= 0.01), and on a Z-plane close to side wall (z/L= 0.01): (a) s= $0.008m$; (b) S= $0.01m$; (c) s= $0.012m$. (Nie and Armaly 2001)	17
2.5	Showing on a y-plane close to the top flat wall (y/s=1.99) and on a z-plane close to the sidewall (z/L=0.01): (a) s=0.008m; (b) s=0.01m; (c) s=0.012m. (Nie and Armaly 2001)	17
2.6	The total temperature contours for the respective non-dimensional parameters specified with adiabatic wall thermal boundary Condition (reproduced from Milanes et al (2004))	23
2.7	The blowing ratio increase the local equivalence ratio within the recirculation zone becomes leaner (reproduced from (Milanes et al (2004))	24
2.8	Flow development of the tangential jet flow in sudden expansion channel for $\text{Re}_U = 6.3 \times 10^4$ and $0 \le U_t / U_{\infty} \le 1$: (a) Streamline plot; (b) Velocity Profile (Jaafar et al 2005)	29
3.1	Schematics of the heat transfer facility	47
3.2	The centrifugal blowers	49
-		

3.3	The primary air circuit	49
3.4	The secondary air circuit	50
3.5	A design boundaries for diffusers with screens (reproduced from Mehta, 1979)	55
3.6	Overall pressure drop coefficient requirements for a diffuser with screens (reproduced from Mehta, 1979)	56
3.7	Schematic of the winding heating elements meshes	59
3.8	Heater section	60
3.9	Schematics of electrical circuit for the heater section	61
3.10	Heater section assembly in the primary air circuit	62
3.11	Schematic installation of thermocouple	64
3.12	Installation of the thermocouple in streamwise direction	64
3.13	Temperature sensor for main channel wall	65
3.14	Assembly of instrumented flat plate	65
3.15	The test plate	66
3.16	Coolant distribution system	67
3.17	Injection hole inserts	67
3.18	Schematics of the slot shape insert	68
3.19	Schematics of the circular shape insert	68
3.20	Schematics of the square shape insert	69
3.21	The flow grid	71
3.22	A location of pitot tube at downstream holes	72
3.23	The step function	72
3.24	Schematic of a standard orifice plate (BS1042)	73
3.25	The customized orifice plate	74
3.26	Installation of static pressure ports at inlet and outlet of secondary contraction duct.	75

3.27	Temperature sensor for mainstream flow	76
3.28	An HP34910A multiplexer board	77
3.29	The Agilent (34970A) Data acquisition unit	78
3.30	The module slot built into the rear	78
4.1	A flow collector	83
4.2	Flow calibration equipment	84
4.3	Incorporating a digital manometer in the flow calibration equipment	84
4.4	Air pressure gauges (left – pre-setting air receiver pressure, right – the air pressure at the outlet)	85
4.5	A Digital Thermometer and Calibrator	86
4.6	Connecting the temperature calibrator to the temperature measuring instrument.	87
4.7	Instrument errors for each measuring channels stations 1 to 19 on the test plate	88
4.8	Boundary layer profiles in the test section	90
4.9	Pressure profile of mainstream intake (X=0mm)	92
5.1	Time history of T_{∞}	95
5.2	Time history of T_t (U _t = 0)	97
5.3	Time history of T_t (U _t = 6 m/s)	99
5.4	Surface temperature distribution on the flat plate for $U_{\infty} = 0$ and $U_t = 0$	101
5.5	Surface temperature distribution on the flat plate for $U_{\infty} > 0$ and $U_t > 0$	102
5.6	Surface temperature distributions for $\text{Re}_{\infty} = 1.0 \text{ x } 10^5$, $U_t/U_{\infty} = 0.75$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	105
5.7	Cooling effectiveness distributions for $\text{Re}_{\infty} = 1.0 \times 10^5$, $U_t/U_{\infty} = 0.75$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	105
5.8	Surface temperature distributions for $\text{Re}_{\infty} = 1.0 \text{ x } 10^5$, $U_t/U_{\infty} = 0.5$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	107

5.9	Cooling effectiveness distributions for $\text{Re}_{\infty} = 1.0 \times 10^5$, $U_t/U_{\infty} = 0.5$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	107
5.10	Surface temperature distributions for $\text{Re}_{\infty} = 1.0 \times 10^5$, $U_{\iota}/U_{\infty} = 0.25$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	109
5.11	Cooling effectiveness distributions for $\text{Re}_{\infty} = 1.0 \times 10^5$, $U_t/U_{\infty} = 0.25$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	109
5.12	Surface temperature distributions for $\text{Re}_{\infty} = 1.3 \text{ x } 10^5$, $U_t/U_{\infty} = 0.6$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	111
5.13	Cooling effectiveness distributions for $\text{Re}_{\infty} = 1.3 \times 10^5$, $U_t/U_{\infty} = 0.6$ and $20 \text{mm}^2/\text{mm}$ slot injection hole	111
5.14	Surface temperature distribution for $\text{Re}_{\infty} = 1.3 \times 10^5$, U _t / U $\infty = 0.7$ and 10 mm x 10 mm square injection hole	114
5.15	Cooling effectiveness distribution for $\text{Re}_{\infty} = 1.3 \times 10^5$, U _t / U $\infty = 0.7$ and 10 mm x 10 mm square injection hole	114
5.16	Surface temperature distribution on the flat plate for $\text{Re}_{\infty} = 1.3 \text{ x } 10^5$, $U_t / U_{\infty} = 0.5$ and 10 mm x 10 mm square injection hole	116
5.17	Cooling effectiveness distribution for $\text{Re}_{\infty} = 1.3 \times 10^5$, U _t / U $\infty = 0.5$ and 10 mm x 10 mm square injection hole	116
5.18	Surface temperature distribution on the flat plate for $\text{Re}_{\infty} = 1.3 \times 10^5$, $U_t / U_{\infty} = 0.2$ and 10 mm x 10 mm square injection hole	118
5.19	Cooling effectiveness distribution for $\text{Re}_{\infty} = 1.3 \text{ x } 10^5$, $U_t / U_{\infty} = 0.2$ and 10 mm x 10 mm square injection hole	118
5.20	Surface temperature distribution on the flat plate for $\text{Re}_{\infty} = 1.3 \times 10^5$, $U_t / U_{\infty} = 0.7$ and 10mm diameter circular injection hole	121
5.21	Cooling effectiveness distribution for $\text{Re}_{\infty} = 1.3 \times 10^5$, U _t / U $\infty = 0.7$ and 10mm diameter circular injection hole	121
5.22	Surface temperature distribution for $\text{Re}_{\infty} = 1.3 \times 10^5 \text{ U}_t / \text{U}_{\infty} = 0.5$ and 10mm diameter circular injection hole	123
5.23	Cooling effectiveness distribution for $\text{Re}_{\infty} = 1.3 \times 10^5$, U _t / U $\infty = 0.5$ and 10mm diameter circular injection hole	123
5.24	Surface temperature distribution for $\text{Re}_{\infty} = 1.3 \times 10^5 \text{ U}_t / \text{U}_{\infty} = 0.4$ and 10mm diameter circular injection hole	125

5.25	Cooling effectiveness distribution for $\text{Re}_{\infty} = 1.3 \text{ x } 10^5$, $\text{U}_t / \text{U}\infty = 0.4$ and 10mm diameter circular injection hole	125
5.26	Surface temperature distributions for $\text{Re}_{\infty} = 1.3 \text{ x } 10^5$, $\text{U}_t/\text{U}_{\infty} = 0.3$ and 10m diameter circular injection hole	128
5.27	Cooling effectiveness distributions for $\text{Re}_{\infty} = 1.0 \times 10^5$, $U_t/U_{\infty} = 0.3$ and 10mm diameter circular injection hole	128
5.28	Effects of T_{∞}/T_t , Re_{∞} and U_t/U_{∞} on surface temperatures for 20mm ² /mm slot injection hole	131
5.29	Effects of T_{∞}/T_t , Re_{∞} and U_t/U_{∞} on cooling effectiveness for $20 \text{mm}^2/\text{mm}$ slot injection hole	131
5.30	Effects of U_t/U_{∞} on surface temperatures for $\text{Re}_{\infty} = 1.3 \text{ x } 10^5$, $T_{\infty}/T_t = 1.16$ and 10mm x 10mm square injection hole	133
5.31	Effects of U_t/U_{∞} on cooling effectiveness for $\text{Re}_{\infty} = 1.3 \times 10^5$, $T_{\infty}/T_t = 1.16$ and 10mm x 10mm square injection hole	133
5.32	Effects of U_t/U_{∞} on cooling effectiveness for $\text{Re}_{\infty} = 1.3 \times 10^5$, $T_{\infty}/T_t = 1.16$ and 10mm diameter circular injection hole	135
5.33	Effects of U_t/U_{∞} on cooling effectiveness for $\text{Re}_{\infty} = 1.3 \times 10^5$, $T_{\infty}/T_t = 1.16$ and 10mm diameter circular injection hole	135

LIST OF ABBREVIATIONS

а	geometrical shape (mm)
<i>a</i> _o	speed of sound (m/s)
Aout	area of outlet (m ²)
A_{t}	cross sectional area (m ²)
A	area (m ²)
A	Agilent 34970A Temperature data logger
A	area ratio
b	geometrical shape (mm)
<i>B</i> 1, <i>B</i> 2	pressure scanning module
В	Blowing ratio $\left(\frac{\rho_{\iota}U_{\iota}}{\rho_{\infty}U_{\infty}}\right)$
С	geometrical shape (mm)
C _p	specific heat of constant pressure
C _v	specific heat of constant volume
C_p	pressure coefficient
C_{f}	skin-friction coefficient
С	computer
С	contraction ratio
d	hydraulic diameter (m)
d	orifice diameter (mm)
d	geometrical shape (mm)

dz	width of the cooled test plate (m)
D_a	Damkohler number $\left(\frac{\tau_{flow}}{\tau_{chem}}\right)$
D_t	hydraulic diameter (m)
D	diameter of downstream and upstream pipe (mm)
DA	primary voltage regulator
DB	secondary voltage regulator
DC	Ammeter
e	thickness of the orifice (mm)
E _{in}	energy in (W)
Eout	energy out (W)
E_{system}	total energy (W)
Е	thickness of the orifice plate (mm)
ER	expansion ratio
f	function
F	thrust produced (Ns/kg)
F	angle of bevel orifice plate
G	orifice upstream edge
h	step height (mm)
h	convection heat transfer coefficient (W/m^2K)
h_0	local convection heat transfer coefficient (W/m^2K)
Η	channel high (mm)

Н	enthalpy (kJ)
Н	shaft power input
Н	high (m)
Н	orifice downstream edge
H^*	heat release potential, $\left(\frac{T_{ad} - T_{t,\infty}}{T_{t,\infty}}\right)$
Н	heat transfer coefficient (W.m ⁻² .K ⁻¹)
Ι	current (A)
Ι	specific momentum ratio $\left(\rho_t U_t^2 / \rho_{\infty} U_{\infty}^2 \right)$
Ι	orifice downstream edge
k	thermal conductivity (W.m ⁻¹ .K ⁻¹)
K _{screen}	screen pressure drop coefficients
Κ	screen pressure drop coefficients
K_{sum}	overall pressure drop coefficients
KE	kinetic energy
L_s	length of working section channel lip respectively (m)
L	length of working section (m)
L	dimensionless (m)
'n	mass flow rate (kg.s ⁻¹)
М	dimensionless (kg)
M_{0}	inlet mach number
M_{∞}	mainstream mach number

M_{a}	mach number
п	number of holes
Nu	Nusselt number, $Nu = \frac{hL}{k}$
P_t	total pressure (Pa)
P_s	static pressure (Pa)
Р	absolute pressure (Pa or Psi)
Р	power (Watt)
Pal	Pitot-Static tube
Pb1,2,3	static pressure taping (secondary settling chamber)
Pb4,5	static pressure taping (orifice plate)
Pr _x	Prandtl number, $\Pr = \frac{c\mu}{k}$
PE	potential energy
q	dynamic pressure $(P_t - P_s)$
$q^{"}$	heat flux (W/m ²)
$\ddot{q_0}$	local heat flux (W/m ²)
Q_{in}	heat transfer of the energy into the system
Q_{out}	heat transfer of the energy out the system
R	electrical resistance (Ω)
$R_{1,2,3,4,5}$	electrical resistance (Ω)
$R_{T1,T2}$	total electrical resistance (Ω)

Re Reynolds number, Re =
$$\frac{\rho u d}{\mu}$$

Re_d Reynolds number based on hole diameter, Re = $\frac{U_{\infty}d}{v_{\infty}}$

Re_s Reynolds number based on slot, Re = $\frac{U_{\infty}d}{v_{\infty}}$

Re_u Reynolds number based on mainstream velocity, Re = $\frac{U_{\infty}(H-h)}{v_{\infty}}$

- Ri Bouyancy parameter,
- RS RS Component
- s step
- S duct local parameter

S separation between the injection hole

$$St_x$$
 Stanton number, $\left(\frac{Nu_L}{\operatorname{Re}_L\operatorname{Pr}} = \frac{h}{\rho Vc_p}\right)$

 T_{∞} mainstream flow temperature (°C)

 T_0 starting temperature reading (°C)

- $T_{a,b,c,d}$ thermocouple probe (T-type)
- T_f film temperature (°C)
- T_s surface temperature (°C)
- T_t cooling flow temperature (°C)
- T_W wall temperature (°C)
- T absolute temperature (°C or °K)

