VISION-BASED AUTONOMOUS VEHICLE DRIVING CONTROL SYSTEM

By

KHALID BIN ISA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2005
To my mother, my late father, my brothers, my sisters-in-law, my lecturers, my friends and my love you are the rhythm in my tune, you are the sun and my moon, you are the beach and my wave, you are the glove and I am the hand, you are the station and I am the train, you are the teacher and I am the pupil, you are the suture to my wound, you are the magnet to my pole, you are the sum to my equations and you are the answer to my question. I dedicate this thesis to you.
In recent years, extensive research has been carried out on autonomous vehicle system. A completely autonomous vehicle is one in which a computer performs all the tasks that the human driver normally would. However, this study only focuses on driving control system that based on vision sensor. Therefore, this study presents a simulation system with Graphical User Interface (GUI) to simulate and analyse the driving control for autonomous vehicle that based on video taken from the vehicle during driving on highway, by using MATLAB programming. The GUI gives easy access to analyse video, image and vehicle dynamics. Once the GUI application for simulation is launched, user can enter input parameters value (number of frames, canny edge detection value, vehicle speed, and braking time) in text control to simulate and analyse video images and vehicle driving control.

In this study, there are four subsystems in the system development process. The first subsystem is sensor. This study was used a single GrandVision Mini Digital Video as sensor. This video camera provides the information of Selangor's highway environment by recording highway scene in front of the vehicle during driving.
Then, the recorded video is processed in the second subsystem, or named as the image-processing subsystem. In this subsystem, image-capturing techniques capture the video images frame by frame. After that, lane detection process extracts the information about vehicle position with respect to the highway lane. The results are the angle between the road tangent and orientation of the vehicle at some look-ahead distance. Driving controller in the controller subsystem, which is the third subsystem, uses the resulted angle from lane detection process along with vehicle dynamics parameters to determine the vehicle-driving angle and vehicle dynamics performance. In this study, designing a vehicle controller requires a model of vehicle’s behaviour, whether dynamics or kinematics. Therefore, in the vehicle subsystem, which is the fourth subsystem, this study used vehicle’s dynamics behaviour as the vehicle model. The model has six degrees of freedom (DOF) and several factors such as the vehicle weight, centre of gravity, and cornering stiffness were taken into account of dynamics modelling.

The important contribution of this study is the development of vehicle lane detection and tracking algorithm based on colour cue segmentation, Canny edge detection and Hough transform. The algorithm gave good result in detecting straight and smooth curvature lane on highway even when the lane was affected by shadow. In this study, all the methods have been tested on video data and the experimental results have demonstrated a fast and robust system.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SISTEM KAWALAN PEMANDUAN KENDERAAAN BERAUTONOMI BERASASKAN PENGLIHATAN

Oleh

KHALID BIN ISA

April 2005

Pengerusi : Profesor Madya Adznan Bin Jantan, PhD

Fakulti : Kejuruteraan

Sejak kebelakangan ini, kajian mendalam telah lakukan ke atas sistem kenderaan berautonomi. Kenderaan berautonomi yang lengkap merupakan satu kenderaan yang dikendalikan oleh komputer dalam melaksanakan semua tugas sebagaimana manusia lakukan. Walaubagaimanapun, pengajian ini hanya menfokuskan pada sistem kawalan pemanduan yang berasaskan pengesan penglihatan. Oleh yang demikian, pengajian ini mempersembahkan satu sistem simulasi dengan Antaramuka Pengguna Bergrafik (GUI) untuk melakukan simulasi dan menganalisa kawalan pemanduan kenderaan berautonomi yang berdasarkan pada video yang diambil daripada kenderaan semasa pemanduan di lebuhraya, dengan menggunakan pengaturcaraan MATLAB. GUI memudahkan capaian untuk menganalisa video, imej dan dinamik kenderaan. Apabila aplikasi GUI untuk simulasi dilancarkan, pengguna boleh memasukkan nilai parameter kemasukan (bilangan bingkai, nilai pengesanan sisi Canny, kelajuan kenderaan, dan masa membrek) ke dalam kotak kawalan bagi melakukan simulasi dan menganalisa imej-imej video dan kawalan pemanduan kenderaan.

Sumbangan penting pengajian ini adalah pembangunan algoritma bagi pengesanan dan penjejakan laluan kenderaan yang berasaskan segmentasi tanda warna, pengesanan sisi Canny, dan transformasi Hough. Algoritma ini telah memberikan keputusan yang baik bagi mengesan laluan lebuhraya yang lurus dan yang
mempunyai kelengkungan yang kecil walaupun terdapat bayang-bayang pada laluai tersebut. Dalam pengajian ini, semua kaedah-kaedah telah diuji pada data video dan keputusan eksperimen membuktikan bahawa sistem ini adalah pantas dan tegap.
ACKNOWLEDGEMENTS

First of all, Syukur Alhamdulillah. Thank you Allah for blessing me with healthiness, strength and guidance in completing this thesis. I would like to sincerely thank Associate Professor Dr. Adznan Bin Jantan my supervisor, for having pointed me to the right direction, for his enthusiastic and energetic guidance throughout my study and for his support, without which, this thesis would not be possible. His endless enthusiasm settings and patience is something to be admired and sought after in both academic settings as well as life.

My committee members, Associate Professor Dr. Abd. Rahman Bin Ramli and Dr. Khairi Bin Yusof; I thank enormously for giving me additional knowledge during the class of Image Processing and Robotic, for being such nice and helpful persons and for looking after my work and making valid suggestions. Their suggestions have helped making this work more focused.

My deepest and utmost gratitude to my family; they have stood by me and witnessed my study and career evolves for the better. They have also been my definite source of constant support and encouragement. Last but not least, to my dear friends; thank you for your support. I love you all very much.
I certify that an Examination Committee met on 9th April 2005 to conduct the final examination of Khalid bin Isa on his Master of Science thesis entitled “Vision-based Autonomous Vehicle Driving Control System” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohammad Hamiruce Marhaban, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Adzir Mahdi, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Sabira Khatun, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Che Mat Hadzer Mahmud, PhD
Associate Professor
School of Electrical and Electronic Engineering
Universiti Sains Malaysia
(External Examiner)

GULAM RUSEL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 JUN 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master. The members of the Supervisory Committee are as follows:

Adznan Bin Jantan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abd. Rahman Bin Ramli, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Khairi Bin Yusuf, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 JUL 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHALID BIN ISA

Date: 10 Jun 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>8</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>9</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>14</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>18</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

- Motivation 20
- Problems Statement 21
- Goal 22
- Objectives 22
- Research Scopes 23

II LITERATURE REVIEW

- Sensors 24
 - Cameras 25
 - Infrared 25
 - Magnetic 25
 - Radar 26
- Lane Detection Using Image Processing and Analysis 26
- Process 27
 - Related Research Review 30
 - Edge Detection 31
 - Hough Transform 31
- Vehicle Modelling and Control 32
 - Vehicle Control with Kinematics Model and Dynamics Model 34
- Linear and Non-linear Controller Design 39
- Discussion 40
- Conclusion 41

III METHODOLOGY

- System Design of Vision-Based Autonomous Vehicle 42
- Driving Control System 42
 - Video Camera Subsystem 43
 - Image Processing Subsystem 44
 - Controller Subsystem 45
 - Vehicle Subsystem 46
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Data and Coordinate of Lines</td>
<td>58</td>
</tr>
<tr>
<td>2 Standard Deviation and Mean Value of Road Area</td>
<td>80</td>
</tr>
<tr>
<td>3 Lines Coordinate of the Lane</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Image was taken from ARGO Vehicle (a) The Acquired Image, (b) The Bird’s Eye View Image</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Results of Lane Detection</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>The Heading Angle, θ, and Steering Angle, ϕ, resulting from using the Actual Errors and Curvature.</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>The Heading Angle, θ, and Steering Angle, ϕ, resulting from using the Model Estimator.</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of Orientation Errors in Lateral Controller</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of Front and Back Errors in Lateral Controller</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Comparison of Total Error Magnitude in Lateral Controller</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>The Four Subsystems of Vision-Based Autonomous Vehicle Driving Control System</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>Image Processing Techniques of Lane Detection Algorithm</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>The RGB Colour Cube (modified from [26]) (a) viewed along the diagonal from white to black, (b) the colour-cube outline in hexagon.</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>The HSV Hex Cone (modified from [26])</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>Cross Section of the HSV Hex Cone, Showing Regions for Shades, Tints, and Tones</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>Screen After Primitive Edge Detection and Thresholding (only significant edge pixel shown)</td>
<td>57</td>
</tr>
<tr>
<td>14</td>
<td>Original Data.</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>Accumulator Array in (m,c) Space. Maximum in the Accumulator Array is 3 at $(-1,4)$, Suggesting that a Line $y = -1x + 4$ goes through Three of the Original Data Points</td>
<td>59</td>
</tr>
<tr>
<td>16</td>
<td>The Definition of the Basic Vehicle Dimensions (modified from [28])</td>
<td>62</td>
</tr>
<tr>
<td>17</td>
<td>The Local Coordinate System Located in the Centre of Gravity of the Vehicle</td>
<td>64</td>
</tr>
</tbody>
</table>
A Definition of the Tire Slip Angle

The Forces are Normal (F_N), Lateral (F_L), and Brake (F_b). Latter appears due to the steering angle δ of the wheel. (a) The Forces Acting on Front Axle, (b) The Forces Acting on Rear Axle

Vehicle Longitudinal Dynamics (modified from [32])

Original Image (RGB) of Frame One in Scene One

(a) Image in Red Space, (b) Histogram Distribution of Image in Red Space, (c) Image in Green Space, (d) Histogram Distribution of Image in Green Space, (e) Image in Blue Space, and (f) Histogram Distribution of Image in Blue Space

(a) Image in Hue Space, (b) Histogram Distribution of Image in Hue Space, (c) Image in Saturation Space, (d) Histogram Distribution of Image in Saturation Space, (e) Image in Value Space, and (f) Histogram Distribution of Image in Value Space

Image with Flyover Shadow in the Highway

(a) Image of Shadow Area, (b) Histogram Distribution of Hue, (c) Histogram Distribution of Saturation, and (d) Histogram Distribution of Value (Intensity)

(a) Image of Non-Shadow Area, (b) Histogram Distribution of Hue, (c) Histogram Distribution of Saturation, and (d) Histogram Distribution of Value (Intensity)

Road Surface as the Object or Region of Interest. Other Objects or Background was converted to Black (0)

Lane Marking Extraction Based on Pixels Value

Edges of Lane Marking by Using Canny Edge Detector

Hough Transform Accumulator to Estimate Lines Coordinate of the Lane Edges

Original Image with Detected Lane that represented by the Detected Lines from Hough Transform Process

(a) Steer Angle Graph where the Y-Axis represents the Steer Angle and X-Axis represents the Time in Second, (b) Roll Angle Graph where the Y-Axis represents the Roll Angle and X-Axis represents the Time in Second, and (c) Trajectory of the Vehicle in Y and X Axis

(a) Velocity and Longitudinal Acceleration Graph, (b) Lateral
Acceleration Graph, (c) Yaw Angle Graph, and (d) Sideslip Angle of the Vehicle Graph

34 (a) Brake Forces Graph, (b) Normal Forces Graph, and (c) Lateral Forces Graph

35 Graphical User Interface of System

36 Detected Lane for Image with Shadow

37 Lane Detection of Scene Three

38 Lane Detection of Night Driving (Scene Four)
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitted Diode</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>LOIS</td>
<td>Likelihood of Image Shape</td>
</tr>
<tr>
<td>GOLD</td>
<td>Generic Obstacle and Lane Detection</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional, Integral, Derivative</td>
</tr>
<tr>
<td>FLASH</td>
<td>Flexible Low-cost Automated Scaled Highwa</td>
</tr>
<tr>
<td>VVTI</td>
<td>Virginia Tech Transportation Institute</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation System</td>
</tr>
<tr>
<td>AVI</td>
<td>Audio Video Interleave</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green, Blue</td>
</tr>
<tr>
<td>HSV</td>
<td>Hue, Saturation, Value</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>CG</td>
<td>Centre Gravity</td>
</tr>
<tr>
<td>2WS</td>
<td>Two Wheels Steering</td>
</tr>
<tr>
<td>DYC</td>
<td>Direct Yaw Control</td>
</tr>
<tr>
<td>MATLAB</td>
<td>Matrix Laboratory</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Automobile manufacturers have developed and are continuing to develop systems for cars that extenuate the driver’s burden to monitor and control all aspects of the vehicle. In the last decades in the field of transportation systems a large emphasis has been given to issues such as improving safety conditions, optimising the exploitation of transport network, reduce energy consumption and preserving the environment from pollution. The endeavours in solving these problems have triggered the interest towards a new field of research and application such as autonomous vehicle driving, in which new techniques are investigated for the entire or partial automation of driving tasks. These tasks include: following the road and keeping within the correct lane, maintaining a safe distance among vehicles, regulating the vehicle’s speed according to traffic conditions and road characteristics, moving across lanes in order to overtake vehicles and avoid obstacles, finding the shortest route to a destination, and moving within urban environments.

A completely autonomous vehicle is one in which a computer performs all the tasks that the human driver normally would. Ultimately, this would mean getting a car, entering the destination into a computer, and enabling the system. From there, the car would take over and drive to destination with no human input. The car would be able to sense its environment and make steering and speed changes as necessary. So, to develop an autonomous vehicle it will involve automated driving, navigating and monitoring systems.
This scenario would require all of the automotive technologies such as lane detection to aid in passing slower vehicles or exiting a highway, obstacle detection to locate other cars, pedestrian, animals, etc., cruise control to maintain a safe speed, collision avoidance to avoid hitting obstacles in the roadway, and lateral control to maintain the car’s position on the roadway. So, sensors will be a major component to develop these technologies.

Completely automating the car is a challenging task and is along way off. However, advances have been made in the individual systems. Cruise control is common in cars today. Adaptive cruise control, in which the car slows if it detects a slower moving vehicle in front of it, is starting to become available on higher-end models. In addition, some cars come equipped with sensors to determine if an obstacle is near and sounds an audible warning to the driver when it is too close.

1.1 Motivation

One of the major reasons of automating the driving task is safety. Human errors are the main cause of many accidents these days. Human driving error may be caused by a number of factors including fatigue and distraction. The driver must constantly monitor the road conditions and react to them over an extended period of time during long drives on the highway. This constant attentiveness is tiring and the resulting fatigue may reduce the driver’s reaction time. Additionally, the driver may be distracted from the task of driving by conversations with other passengers, tuning the radio and using a cell phone. Therefore, to reduce the number of injuries and fatalities on the roadways these errors must be eliminated. However, viewed from
another perspective, a car capable of driving itself can allow the driver to perform non-driving tasks safely while travelling to their destination.

1.2 Problems Statement

The invention of cruise control decreased the burden of driving for anyone driving on highway. Besides, power steering, anti-lock braking and traction control were created to further alleviate stress from the driver. Therefore, the next step is to completely automate the driving experience. This leads many researchers to do research about autonomous vehicle driving system. There are many problems that needed to be understood, analysed and solved:

1. Forward vision sensor and data acquisition; it provides information of the road.

2. Lane detection and tracking on highway; it provides the input of the vehicle steering command.

3. Kinematics and dynamics model of vehicle; it shows the behaviour of the vehicle.

4. Vehicle control systems and algorithms; it controls the movement of the vehicle.

Looking on previous researches, some of them just focused only on lane detection for autonomous vehicle driving system without discussing driving system [1]. The problem with this is that the big picture of vehicle following the road is not presented. On the other hand, for researches that focused on vision-based driving control system, majority of control algorithms for such a vehicle only use the
kinematics model [2], and [3]. The advantage of the kinematics model is that it keeps
the steering and velocity of the vehicle completely decoupled. The problem with this
is that, in the process, the dynamics of the vehicle are ignored. Therefore, this thesis
focused on vision-based autonomous vehicle driving control system, where the
control algorithms for the vehicle used the dynamics model.

1.3 Goal

The goal of this research is to develop a simulation of vision-based
autonomous vehicle driving control system. In the feature, this system can be
realised for commercial implementation. The implementation of this system in
commercial and passenger vehicle can be used as a driver assistant when the driver is
tired or suffers from fatigue.

1.4 Objectives

Autonomous vehicle driving control system carries a large number of benefits
especially for automotive industry. The general objectives of this research are:

1. To improve the vehicle driving control system by detect the driving lane
 using computer system.
2. To make driving on today’s highway safer and easier.
3. To reduce the driver’s burden during driving in relation to the fact that human
 errors are the main cause of many accidents these days.
4. To assists human driver, therefore the driver can perform non-driving tasks
 while travelling.
The specific objectives of this research are:

1. To prove that by using HSV colour space the shadow in the image can be removed.
2. To prove that by processing and analysing the images during driving, a vehicle can determine the steering command for the vehicle lateral control.
3. To prove that the vehicle’s dynamic performance can be determined by combining the steering command and others vehicle dynamics parameters. Therefore, the mathematical operations, implementation methods, techniques and approaches to develop a simulation of the system must be implemented.

1.5 Research Scopes

This system used a single video camera as an input sensor for the vehicle, so it not doing all the tasks of autonomous vehicle driving system. Therefore, the scopes of this research are:

1. Analyse video data and capture the video image frame by frame.
2. Detect and track the desired lane of straight or smooth curvature highway using image processing and analysis methods.
3. Determine and analyse the dynamic model of the vehicle.
4. Determine and analyse vehicle lateral and longitudinal control.
5. Determine and analyse the performance of the vehicle.
Autonomous driving functionalities can be achieved acting on infrastructures and vehicles. Enhancing road infrastructures may yield benefits to those kinds of transportation, which are based on repetitive and prescheduled routes, such as public transportation and industrial robotics. On the other hand, it requires a complex and extensive organization and maintenance, which can become extremely expensive in case of extended road networks for private vehicles use. For this reason, the system that is expected to be achieved on a short-term basis can only be vehicle-autonomous. In this review, only selected components of autonomous vehicle driving control system are considered, while road infrastructure, inter-vehicle communication, satellite communications and route planning issues are not covered.

2.1 Sensors

The key element in autonomous vehicle driving system is sensor, which provides information to the electronic control unit. The sensor gave information to the controller and then the controller will determine where the path is located with respect to the vehicle. Each sensor available to perform this task has different level accuracy and ease of implementation. In addition, some sensors require changes to the roads themselves while others can be used on existing roads.