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Engineering 

This thesis presents a new statistical multi-cluster indoor channel model for ultra- 

wideband (UWB) communications between 0.1 to 2 GHz. The proposed model has 

been developed based on 924 measured channel impulse responses conducted at 24 

different locations over a single floor in a typical modem office environment. 

The multi-cluster channel characteristics are modeled according to 10 independent 

channel parameters extracted from the large-scale and small-scale statistical 

analysis of the received energy delay profiles (EDP). Three new channel parameters 

were introduced to better describe the time and energy dispersion statistics of the 

UWB signal. They are the maximum excess delay (MED), decay factor, y within 

the MED and energy gains variations between adjacent bins, X. 



The pulse propagation characteristics were further modeled according to several 

path topogaphies. In addition, two new path loss prediction models were developed 

to take into account the attenuation factor (AF) due to gypsum and brick wall, the 

two main obstructing walls in this experiment. 

The proposed multi-cluster channel model improves the prediction accuracy of the 

UWB pulse characteristics for various path topographies due to its detailed 

parameterization of the channel statistics. In comparison, the channel model of 

Cassioli et a]. in 2001 was developed using only three independent lognormal 

parameters, i.e. shadowing, o, decay factor, y and the energy gains ratio, r. 

Furthermore, Cassioli et al. proposed a single cluster channel model without 

topographical classification. The channel model of Alvarez et al. in 2003 however 

was developed based on five channel parameters extracted from analysis conducted 

in the frequency domain. This method does not accurately capture the time delay 

statistics of the transmitted pulse. 

The experimental results i ndicate the  U WB s ignal's h igh i mmunity a gainst fades 

and its attractiveness for propagation in tunnels. In addition the UWB channel was 

observed to exhibits a wide-sense-stationary-uncorrelated-scattering (WSSUS) 

characteristic which simplifies the transfer function between the time and frequency 

domains via a single Fourier transform. 
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Tesis ini akan mengemukakan sebuah model perangkaan baru berbilang kelompok 

untuk saluran komunikasi dalam bangunan menggunakan gelombang jalur 

ultralebar (UWB) dari 0.1 ke 2 GHz. Model yang dikemukakan ini telah digubal 

berasaskan 924 ukuran gerakbalas dedenyut saluran dari 24 lokasi yang berbeza di 

aras tingkat yang sama dalam sebuah ruang pejabat moden yang lazim. 

Ciri-ciri saluran berbilang kelompok dimodelkan mengikut 10 parameter saluran 

bebas yang dihasilkan dari analisa perangkaan skala besar dan skala kecil 

menggunakan gambaran susutan tenaga yang diterima (EDP). Tiga parameter 

saluran barn telah diperkenalkan untuk menggambarkan perangkaan serakan masa 

dan tenaga gelombang UWB dengan jelas. Ia terdiri daripada tempoh susutan 



maksimum (MED), faktor susutan, y dalam lingkungan mass MED dan perbezaan 

tenaga gandaan di antara bin yang bersebelahan, x. 

Ciri-ciri perambatan dedenyut telah dimodelkan selanjutnya mengikut beberapa 

laluan topografi. Sebagai tambahan, dua model ramalan kehilangan laluan baru 

telah dibangunkan dengan mengambil kira faktor pengecilan (AF) yang disebabkan 

oleh dinding gipsum dan batu, iaitu dua jenis dinding penghadang utama yang 

terdapat dalam ujikaji ini. 

Model saluran berbilang kelompok yang disarankan ini dapat memperbaiki ramalan 

kejituan ciri dedenyut UWB untuk pelbagai laluan topografi disebabkan hasil 

perangkaan saluran yang terperinci yang telah dikemukakan. Ini berbanding dengan 

model saluran Cassioli et al. pada 2001 yang dibangunkan menggunakan hanya tiga 

parameter lognormal bebas, iaitu pembayangan, o, faktor susutan, y dan nisbah 

tenaga gandaan, r. Tambahan pula, Cassioli et al. telah mencadangkan model 

saluran sekelompok tanpa perbezaan topografi. Model saluran Alvarez et al. pada 

2003 pula telah dibangunkan mengikut lima saluran parameter yang dihasilkan 

menerusi analisa domain frekuensi. Namun kaedah ini tidak dapat menawan 

perangkaan susutan masa dedenyut pemancar dengan jitu. 

Hasil k eputusan ujikaji menunjukkan b ahawa g elombang U WB m empunyai d aya 

kekalisan yang tinggi terhadap resapan dan sangat sesuai untuk perambatan dalam 

terowong. Tambahan pula, saluran UWB didapati menunjukkan sifat lebar-pegun- 



tanpa-hubungan-penyerakan (WSSUS) yang memudahkan fungsi menjelmaan di 

antara domain masa dan frekuensi iai tu menerusi satu aliran penjelmaan Fourier. 
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