UNIVERSITI PUTRA MALAYSIA

METABOLOMICS STUDY ON THE EFFECTS OF Orthosiphon stamineus Benth. ON STREPTOZOTOCIN-INDUCED DIABETIC RAT MODEL

AMALINA BINTI AHMAD AZAM

IB 2015 1
METABOLOMICS STUDY ON THE EFFECTS OF *Orthosiphon stamineus* Benth. ON STREPTOZOTOCIN-INDUCED DIABETIC RAT MODEL

By

AMALINA BINTI AHMAD AZAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

June 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright materials of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
METABOLOMICS STUDY ON THE EFFECTS OF Orthosiphon stamineus Benth. ON STREPTOZOTOCIN-INDUCED DIABETIC RAT MODEL

By

AMALINA BINTI AHMAD AZAM

June 2015

Chairman: Intan Safinar Ismail, PhD
Institute: Bioscience

The main purpose of this research is to study the anti-diabetic effects of Orthosiphon stamineus Benth. Extract (OSE) in different solvent polarity (ethanol, ethanol: water, methanol, methanol: water and water) in streptozotocin (STZ)-induced diabetic rats by using metabolomics approach. The rat model of diabetic-induced by streptozotocin (STZ: 60 mg Kg\(^{-1}\)) from which urine and serum used as the media to detect pathological changes during the development and curing of diabetes mellitus. The second objective is to develop a validated model between the chemical profile of extracts and anti-diabetic activity of induced STZ-diabetic rats that treated orally with OSEs within 14 days and Glibenclamide used as reference drug. Proton Nuclear Magnetic Resonance (\(^1\)H NMR) spectra of the extracts, urine and serum were obtained and analyzed by multivariate data analysis (MVDA). Partial least square discriminant analysis (PLS-DA) of \(^1\)H NMR spectra disclosed metabolic pattern differences among groups where the related metabolic changes in urine and serum identified. OSE of water showed significantly (P < 0.05) reduction in urine glucose by 31.4% through PLS-DA of \(^1\)H NMR with changes nearing to the control group or similar to glibenclamide that reduced by 48.6%. The novelty of metabolomics approaches is their ability to give a broad overview of metabolites from complex biological samples. Interestingly, the spectroscopic data of urine STZ-diabetic rats revealed that glucose, allantoin, creatine, creatinine, and glutamate were near to normal group ranges after treatment. Furthermore, to propose the metabolism pathway affected by the OS treatment in diabetic rats, MetScape 3.0 software was used. Consequently, several metabolic pathways like carbohydrate, lipid, and amino acid metabolism have been affected during the treatment period. This study suggests that OSE of water may be beneficial in treating the hyperglycemic condition as it acts in a better way compared to glibenclamide drug. The significantly higher intensity of purine metabolites (allantoin) detected in OSE water indicates an increased in glomerular filtration rate that prove the ability in helping kidney function.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KAJIAN METABOLOMIK MENGENAI KESAN *Orthosiphon stamineus* Benth. PADA TIKUS ARUHAN STREPTOZOTOCIN-DIABETIS MODEL

Oleh

AMALINA BINTI AHMAD AZAM

Jun 2015

Pengerusi: Intan Safinar Ismail, PhD
Institut : Biosains

Tujuan utama kajian ini adalah untuk menjelaskan kesan ekstrak *Orthosiphon stamineus* Benth. ekstrak (OSE) di dalam pelarut yang berbeza polariti (etanol, etanol:air, metanol, metanol:air dan air) pada tikus aruhan streptozotocin (STZ)-diabetis telah dijalankan menggunakan pendekatan metabolomik. Model tikus diabetis yang di rangsang oleh streptozotocin (STZ: 60 mg Kg\(^{-1}\)) yang mana air kencing dan serum darah telah digunakan sebagai medium bagi mengenalpasti perubahan patologi semasa perkembangan dan rawatan diabetis melitus. Objektif kedua adalah untuk membina model validasi antara profil kimia ekstrak dan aktiviti anti-diabetis tikus diabetis yang di rangsang oleh STZ, yang telah diberi makan OSE selama 14 hari dan glibenclamide telah digunakan sebagai ubatan rujukan. Proton Nuklear Magnetik Resonan (\(^1\)H NMR) diperoleh dari air kencing dan serum darah telah digunakan untuk analisa menggunakan analisis multivariat (MVDA). Analisa separa persegi diskriminan (PLS-DA) dari \(^1\)H NMR spektra membuktikan corak perubahan metabolik di dalam air kencing dan serum darah antara kumpulan-kumpulan dikenalpasti. OSE air menunjukkan pengurangan signifikan (P < 0.05) pada glukosa dengan 31.4% melalui PLS-DA dari \(^1\)H NMR dengan perubahan yang menghampiri kumpulan kawalan atau rujukan kawalan iaitu glibenclamide yang berjaya mengurangkan glukosa sebanyak 48.6%. Pendekatan metabolomik adalah novel kerana kebolehannya untuk memberi gambaran keseluruhan metabolit yang terlibat dalam sampel biologi yang kompleks. Lebih menarik, data spektroskopi dari air kencing tikus STZ-diabetis menunjukkan jutil glukosa, allantoin, kreatin, kreatinin dan glutamat menghampiri jutil kumpulan kawalan selepas rawatan. Untuk mengenalpasti laluan metabolik yang terjejas oleh rawatan OS, perisian Metscape 3.0 telah digunakan. Keputusan menunjukkan beberapa laluan metabolik seperti karbohidrat, lemak, dan metabolomik asid amino telah terjejas semasa tempoh rawatan. Kajian ini mencadangkan yang OSE air mungkin bermanfaat dalam merawat hiperglisemik oleh kerana ia bertindak lebih baik apabila dibandingkan dengan ubat glibenclamide. Peningkatan signifikan metabolik purin (allantoin) yang dikesan di dalam OSE air menunjukkan peningkatan pada kadar penapisan glomerular yang membuktikan kebolehannya dalam membantu fungsi buah pinggang.
ACKNOWLEDGEMENTS

All praise to Allah (SWT), the Most Gracious and Merciful, for giving me the strength and patience to complete this thesis, despite many obstacles, stumbled during this study.

This thesis rose out of three years of research. Obviously, my thesis would not have been possible without the support of many people. I have had the unique opportunity to work with expertise in different background during my research. I would like to acknowledge the mentorship of my supervisor, Assoc. Prof. Dr. Intan Safinar Binti Ismail, whose generosity is unparalleled. I appreciate all her time, advice, guidance and patience throughout my research. To the member of my MSc Committee, Assoc. Prof. Dr. Alfi Khatib and Prof. Amin Bin Ismail, I also would like to thank for their valuable inputs and advice.

I would like to express my gratitude to my teammate, Raghunath Pariyani for all discussion, fun, and support while conducting studies. Also, special thanks to Norzaini Binti Johari and Azliana Binti Abu Bakar Sajak for their contribution and help in animal study. I am indebted to Mr. Salahuddin Bin Mohd Raof, science officer, for teaching and guiding in NMR data gathering and analysis. I also would like to thank Prof. Khozirah for providing Chenomx software which essential to complete all data analysis.

I am truly grateful for collaboration, support and friendship of all the members of Natural Products Laboratory. They have made this graduate school experience remarkably enjoyable. Finally, I would like to express my gratitude to my family for moral support. The work presented in this thesis has received funding from the Ministry of Agriculture (MoA).
I certify that a Thesis Examination Committee has met on 15 June 2015 to conduct the final examination of Amalina binti Ahmad Azam on her thesis entitled "Metabolomics Study on the Effects of Orthosiphon stamineus Benth. on Streptozotocin-Induced Diabetic Rat Model" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Thahirah Begum, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Gwendoline Ee Cheng Lian, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Chung Lip Yong, PhD
Associate Professor
University of Malaya
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Intan Safinar Ismail, PhD
Associate Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Amin Ismail, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

Alfi Khatib, PhD
Associate Professor
Faculty of Pharmacy
International Islamic Universiti Malaysia
(Member)

__

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecturer notes, learning modules or any others materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________________ Date: __________________

Name and Matric No.: Amalina Binti Ahmad Azam (GS32379)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Reversion 2012-2013) are adhered to.

Signature: ______________________
Name of Chairman of
Supervisory Committee: Intan Safinar Ismail, PhD

Signature: ______________________
Name of Member of
Supervisory Committee: Amin Ismail, PhD

Signature: ______________________
Name of Member of
Supervisory Committee: Alfi Khatib, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>1 INTRODUCTION</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Orthosiphon stamineus</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Classification</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Plant Morphology</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Nutritional Composition and</td>
<td>5</td>
</tr>
<tr>
<td>Phytochemistry of O. stamineus</td>
<td></td>
</tr>
<tr>
<td>Extracts</td>
<td></td>
</tr>
<tr>
<td>2.5 Traditional Use of O. stamineus</td>
<td>8</td>
</tr>
<tr>
<td>2.6 Pharmacological Properties</td>
<td>9</td>
</tr>
<tr>
<td>of O. stamineus</td>
<td></td>
</tr>
<tr>
<td>2.6.1 Antidiabetic Properties</td>
<td>9</td>
</tr>
<tr>
<td>2.6.2 Other Pharmacological</td>
<td>9</td>
</tr>
<tr>
<td>Activities</td>
<td></td>
</tr>
<tr>
<td>2.6 Diabetes Mellitus</td>
<td>10</td>
</tr>
<tr>
<td>2.6.1 Definition, Type and</td>
<td>10</td>
</tr>
<tr>
<td>Epidemiology</td>
<td></td>
</tr>
<tr>
<td>2.6.2 Mechanisms of Diabetes</td>
<td>11</td>
</tr>
<tr>
<td>Mellitus</td>
<td></td>
</tr>
<tr>
<td>2.6.2.1 Protein and Carbohydrate</td>
<td>12</td>
</tr>
<tr>
<td>metabolism</td>
<td></td>
</tr>
<tr>
<td>2.6.2.2 Lipid and Ketone</td>
<td>12</td>
</tr>
<tr>
<td>metabolism</td>
<td></td>
</tr>
<tr>
<td>2.7 Animal Model of Diabetes</td>
<td>13</td>
</tr>
<tr>
<td>Mellitus</td>
<td></td>
</tr>
<tr>
<td>2.8 Metabolomics Approach</td>
<td>13</td>
</tr>
<tr>
<td>2.8.1 Introduction</td>
<td>14</td>
</tr>
<tr>
<td>2.8.2 Analysis of Biofluid</td>
<td>15</td>
</tr>
<tr>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>2.8.3 Data Preprocessing</td>
<td>16</td>
</tr>
<tr>
<td>2.8.4 Statistical Analysis and</td>
<td>16</td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>2.8.5 Validation of Metabolomics</td>
<td>16</td>
</tr>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>2.8.6 Limitation of Metabolomics</td>
<td>17</td>
</tr>
<tr>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>2.8.7 Metscape Software Tools</td>
<td>17</td>
</tr>
</tbody>
</table>

3 METHODOLOGY	18
3.1 Materials and Chemicals	18
3.2 Plant Sampling	18
3.3 Plant Extraction	18
3.4 Preparation of Animal	18
3.4.1 Preliminary Study:	18
Preparation of Rats	
3.4.1.1 Rats Grouping	18
3.4.1.2 Induction of Diabetic	19
Rats	
3.4.1.3 Rats Regrouping 19
3.4.1.4 Oral Glucose Tolerance Test (OGTT) in Normal and Diabetic Rats 20
3.4.1.5 Administration of the Aqueous Extracts 21
3.4.1.6 Determination of Glucose Profile in Normal and Diabetic rats 21
3.4.1.7 *O. stamineus* Aqueous Extract and Glibenclamide Dose Effect on Blood Glucose Level 21

3.4.2 Antidiabetic Study 21
3.4.2.1 Rats Grouping 21
3.4.2.2 Dose Preparation 22
3.4.2.3 *O. stamineus* Extracts and Glibenclamide Dose Effect on Blood Glucose Level 22
3.4.2.4 Administration of the Extracts 22
3.4.2.5 Collection of Urine and Serum Sample 23

3.5 Histological Staining Tissue 25
3.6 Acquisition of 1H-NMR Spectroscopic Measurement of Urine 25
3.7 Acquisition of 1H-NMR Spectroscopic Measurement of Serum 25
3.8 Statistical Analysis of 1H-NMR 26
3.9 Visualization of Metabolomics Network 26

4 RESULTS AND DISCUSSION 27
4.1 Sampling and Plant Extraction 27
4.2 Preliminary Studies of Aqueous OSE 27
4.2.1 Effect of Repeated Administration of Aqueous OS in Normal and Diabetic rats 27
4.3 Antidiabetic Study 29
4.3.1 Assignment of Serum Metabolites Based on 1H-NMR Spectra 29
4.3.2 Multivariate Data Analysis (MVDA) of Serum Metabolites 37
4.3.3 Model Validation of Serum Metabolites 44
4.3.4 Visual Inspection of 1H-NMR Spectra and Assignment of Urine Metabolites 45
4.3.5 Multivariate Data Analysis (MVDA) of Urine Metabolites 55
4.3.6 Model Validation of Urine Metabolites 61
4.4 Regression Model 62
4.5 Discussion 64

5 GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 70
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Vernacular names of Orthosiphon stamineus</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Composition of main bioactive compound in different OS solvent extracts</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>The amount of solvent and dried leaves used, amount of extract and their percentage yield</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of Orthosiphon stamineus water extract oral administration on plasma glucose concentration for 14 days</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>Potential marker metabolites in rat serum identified by 1H NMR CPMG spectra and their signal IR splitting pattern</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Potential marker metabolites in rat serum identified by 1H NMR CPMG spectra and their changes among groups of their integral level values at day 14 of treatment</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>1H NMR chemical shifts of metabolites in serum for normal, STZ-diabetic and OSE treated rats (in ascending order of the signals in the spectra)</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>Potential marker metabolites in rat urine identified by 1H NMR and their signal IR splitting pattern</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>1H NMR chemical shifts of metabolites in urine from the normal, STZ-diabetic and OSE treated rats (in ascending order of the signals in the spectra)</td>
<td>50</td>
</tr>
<tr>
<td>4.8</td>
<td>Potential marker metabolites in rat urine identified by 1H NMR spectra and their changes among group of their integral level values at day 14 of treatment</td>
<td>54</td>
</tr>
<tr>
<td>4.9</td>
<td>R^2 value for normal and diabetic rat model based on antidiabetic activity of chemical compound in biofluids</td>
<td>64</td>
</tr>
<tr>
<td>A.1</td>
<td>Comparison of body weight between normal rat groups and diabetic rat groups on Day 0, 7 and 14 of treatment</td>
<td>85</td>
</tr>
<tr>
<td>A.2</td>
<td>Comparison of water uptake between normal rat groups and diabetic rat groups on Day 0, 7, and 14 of treatment</td>
<td>86</td>
</tr>
<tr>
<td>A.3</td>
<td>Oral glucose tolerance test (OGTT) and single dose effect of the extracts in rats</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Orthosiphon staminues (Misai Kucing)</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of compounds</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Proposed pathogenesis of DKA and HHS. DKA– Diabetes Ketoacidosis; HHS– hyperglycemic hyperosmolar syndrome; FFA- Free fatty acid</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Regression model calculated using Orthogonal-Partial Least Square to correlate chemical profile of the herbal extract and bio-activity (Roos et al., 2004)</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design for preliminary study of antidiabetic rat effect of OSE</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental design of the antidiabetic study</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Plasma glucose level at baseline (0day), middle (7days) and final (14days)</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>1H NMR of sera obtained from normal rat groups after 14days of treatment. (A) Normal treated with glibenclamide rat, (B) Normal treated with ethanol OS extract rat, (C) Normal treated with 50% ethanol OS extract rat, (D) Normal treated with methanol OS extract rat, (E) Normal treated with aqueous OS extract rat, and (F) Normal rat.</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>1H NMR of sera obtained from diabetic rat groups after 14days of treatment. (G) Diabetic treated with glibenclamide rat, (H) Diabetic treated with ethanol OS extract rat, (I) Diabetic treated with 50%ethanol OS extract rat, (J) Diabetic treated with methanol OS extract, (K) Diabetic treated with aqueous OS extract rat and (L) Diabetic rat.</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Overlaid 1H NMR serum spectra of normal and diabetic control rats (Blue- Diabetes; Green- Normal, □ Sugar region)</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>PLS-DA score plot A (0 day) and B (14 day) on 1H NMR serum spectra. Key: (★) N rats, (☐) N-G rats (○) N-A rats, (□) N-E rats, (△) N-50E rats, (◇) N-M rats</td>
<td>38</td>
</tr>
<tr>
<td>4.5.1</td>
<td>(A) The loading column plot of PLS component 1 based on rat groups (B) The loading column plot of PLS component 1 based on selective chemical variables</td>
<td>39</td>
</tr>
<tr>
<td>4.6</td>
<td>PLS-DA score plot A (0 day) and B (14 day) based on 1H NMR spectra of rat serum. Key: (★) N rats, (☐) D-G rats (○) D-A rats, (□) D-E rats, (△) D-50E rats, (◇) D-M rats and (◇) D rats</td>
<td>41</td>
</tr>
<tr>
<td>4.6.1</td>
<td>(A) The loading column plot of PLS component 1 based on</td>
<td>42</td>
</tr>
</tbody>
</table>
group (B) The loading column plot of PLS component 1 based on chemical variables

4.6.2 (A) The loading column plot of PLS component 2 based on group (B) The loading column plot of PLS component 2 based on chemical variables

4.7 Permutation test for the first component of PLS for model 1 (B) Permutation test for the first component of PLS for model 2

4.8 ^{1}H NMR of urine obtained from normal rat groups after 14 days of treatment. (A) Normal treated with glibenclamide rat, (B) Normal treated with ethanol OS extract rat, (C) Normal treated with 50% ethanol OS extract rat, (D) Normal treated with methanol OS extract rat, (E) Normal treated with aqueous OS extract rat, and (F) Normal rat. (1) Hydroxybutyrate (2) Isoleucine (3) Leucine (4) Lactate (5) Acetate (6) Acetoacetate (7) Succinate (8) Pyruvate (9) Choline (10) Citrate (11) Dimethylamine (12) Creatine (13) Creatinine (14) Betaine (15) Taurine (16) Glucose (17) N-phenylacetylglucine (18) Allantoin (19) Hippurate (20) Phenylalanine (21) Glutamate and (22) Urea

4.10 Overlaid ^{1}H NMR spectra of normal and diabetic control rats (Blue-Diabetic; Green Normal, Sugar region)

4.11 PLS-DA score plot A (0 day) and B (14 day) based on ^{1}H NMR spectra of rat urine. Key: (★) N rats, (☐) NG rats (●) NA rats, (☐) NE rats, (△) N50E rats, (◇) NM rats

4.11.1 (A) The loading column plot of PLS component 1 based on groups (B) The loading column plot of PLS component 1 based on selective compounds

4.12 PLS-DA score plot A (0 day) and B (14 day) based on ^{1}H NMR spectra of rat urine. Key: (★) N rats, (☐) D-G rats (●) D-A rats, (☐) D-E rats, (△) D-50E rats, (◇) D-M rats and (hearty) D rats.

4.12.1 (A) The loading column plot of PLS component 1 based on groups (B) The loading column plot of PLS component 1 based on selective chemical /compound variables

4.12.2 (A) The loading column plot of PLS component 2 based on group (B) The loading column plot of PLS component 2 based on chemical variables

4.13 (A) Permutation tests for the first component of PLS for model
1 (B) for the first component of PLS for model 2

4.14 Regression model on bioactivity of extracts towards chemical variable in diabetic and normal rat model treated with OSE in serum and urine

4.15 Metabolic map of suggested alterations in carbohydrate metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and pathways of cofactors and vitamins in diabetic rat. Significant metabolites which act as biomarkers (blue font). Networks were generated using Cytoscape with the Metscape plug-in. Key: (Δ) amino acid metabolism, () glycerophospholipid metabolism (Ο) glycine, serine, alanine and threonine metabolism, (Ο) glycolysis and gluconeogenesis metabolism, (▽) histidine metabolism, (□) TCA cycle, (□) urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine metabolism and (∀) vitamin B9 (folate) metabolism.

B.1 Histology of rat kidney cross section 88
B.2 Histology of rat liver cross section 89
B.3 Histology of rat pancreas cross section 90
LIST OF ABBREVIATIONS

/ Chemical shift in ppm
APCI-MS Atmospheric Pressure Chemical Ionization Mass Spectroscopy
br Broad
\(^{13} \text{C} \) Carbon-13
COSY Correlation Spectroscopy
d Doublet
dd Doublet of doublets
ddd Doublet of doublets of doublets
dt Doublet of triplets
eV Electron volt
FT-IR Fourier Transform Infra-Red
\(^{1} \text{H} \) Proton
HMBC Heteronuclear Multiple Bond Correlation
HSQC Heteronuclear Single-Quantum Coherence
EIMS Electron Impact Mass Spectrum
J Coupling Constant in Hz
m Multiplet
MHz Megahertz
s Singlet
t Triplet
OSE Orthosiphon stamineus extract
STZ Streptozocin
CMC Carboxymethylcellulose
Trimethylsilane propionic Acid Sodium Salt
ACUC Animal Care and Use Committee
TCA Tricarboxylic acid
OGTT Oral Glucose Tolerance Test
CPMG Carr-Purcell-Meiboom-Gill
CHAPTER 1

INTRODUCTION

Diabetes mellitus (DM) is serious and increasing health burden, treatable but incurable lifelong disease. According to International Diabetes Federation (IDF) through *Diabetes Atlas* (2011), around 366 million people worldwide had diabetes, and it is projected to increase by years to 552 million in 2030. An alarming of 3.6 million adults was estimated to be affected by diabetes in Malaysia alone (The Star, 2014). Based on the definition by WHO (2011), diabetes is a condition primarily defined by the level of glycaemia which raise the risk of microvascular (retinopathy, nephropathy and neuropathy) and macrovascular complications (heart attack, stroke and peripheral vascular disease). In addition, DM is also a chronic metabolites disorder of multiple etiologies characterized by insulin deficiency that leads to the elevation in glycaemia (Gupta *et al*., 2005), which in turn causes changes primarily in carbohydrate metabolism and secondarily of lipids such as cholesterol, triglyceride and lipoprotein in plasma (Fontes, 2002; Negri, 2005; Al-Hiari *et al*., 2011).

Despite the vast understanding of its epidemiology, yet there are no effective therapies to cure diabetes (Maiti *et al*., 2004) and a definite solution for its prevention and causes is still not forthcoming (Zhang *et al*., 2008). Biguanides and sulfonylureas are drugs used alone or together with insulin to treat this disease. Unfortunately, these medications can cause side effects (Hwang *et al*., 2005), which are also not suitable for use during pregnancy (Pari and Uma, 1999). Also, failure of this hypoglycemic synthetic drug in significantly altered diabetic complications (Rang and Dale, 1991) lead to demand for alternative therapy which is safer and efficient as antidiabetic agents. In recent years, there is a broad revolution in using natural products for pharmacological applications, wherein numerous published investigations done on laboratory animals showing various plant extracts actually reduced glycaemia with fewer side effects and lower costs than the usual antidiabetic agents drugs (Pushparaj *et al*., 2000; Gupta *et al*., 2005; Sohn *et al*., 2010; Petchi *et al*., 2014).

The first medical text reported on diabetes mellitus is over 2000 years ago (Vladmir and John, 2005). Since then, diabetes was treated orally by traditional remedies with indications of 800 plants used (Eidi *et al*., 2005). However, only a few plants have undergone comprehensive scientific investigations. Even though traditional medicines have considerable benefits in illness recovery since early stages but the effectiveness and stability are in doubt since the little in-depth study was conducted. This is due to the herbs require standardization of their content for diabetic therapeutic activity consistency of the products. Therefore, maximal doses of toxicology and effective treatment are crucial to be disclosed (David *et al*., 2001). WHO also recommended research to focus on this area. *Orthosiphon stamineus* is one of medicinal plants which gained popularity due to its extensive therapeutic uses.
Orthosiphon stamineus Benth (Lamiaceae) is a traditional medicinal plant in Southeast Asia countries such as Indonesia and Malaysia. Its use is recommended for the treatments of many diseases, especially those affecting the urinary tract, diabetes mellitus, hypertension, rheumatism, tonsillitis and menstrual disorder (Awale et al., 2003). In Malaysia, the tea prepared from the leaves is believed to treat kidney disease, bladder inflammation, gout, and diabetes. Moreover, the major chemicals of Orthosiphon stamineus (OS), for example, polymethoxylated flavonoids and caffeic acid derivatives were shown to exert diuretic and uricosuric actions in rats (Olah et al., 2003).

Various studies on the use of OS in treating DM were conducted both in vivo and in vitro assays. Dose of 200mg, 500mg and 1000 mg Kg\(^{-1}\) of rat body weight (BW) of OS aqueous extract was reported effective for alleviating hyperglycemia and improving lipid profile in diabetic rats after 14 days of treatment (Sriplang et al., 2007). According to the study conducted by Abdullah (2009), the acute toxicity test LD\(_{50}\) of OS standardized extract was estimated to be >5000 mg Kg\(^{-1}\) of body weight (BW) in Sprague-Dawley (SD) rats that proved that OS is safe to be consumed. These studies have utilized streptozotocin (STZ)-induced rats in vivo model. STZ (N-nitro derivative of glucosamine) is an antibiotic and cytotoxic chemical which is particularly toxic to the pancreas leading to the degeneration of Langerhans islets beta cells which are responsible for insulin production in mammals (Hayashi et al., 2006; Ikebukuro et al., 2002; Weiss, 1982).

Metabolomics is a tool to identify all metabolites in biological fluids such as urine and blood (Listudies et al., 2007). It relates biological endpoints to multiple altered metabolites in which provide the biological information of health in a complex system (Viant et al., 2003; Chen et al., 2006). Metabolomics combines data rich of advanced analytical tools such as nuclear magnetic resonance (NMR)-spectroscopy or mass spectrometry or both with multivariate statistical analysis (MVA). However, \(^1\)H NMR is preferable in this study because it is robust, rapid, has high reproducibility, and is capable in detecting broad range of metabolites changes in both normal and abnormal biochemical pathways. This provides great potential for revealing the unknown mechanism of pathophysiology of drug effects (Cho et al., 2015). In metabolomics study, NMR spectral pattern and intensity are recorded, and then statistically compared. Their features were identified for the relevant spectra that discriminate sample classes. Identification technique usually involved unsupervised clustering (Principal Component Analysis or PCA) or supervised classification (Partial Least Squares Discriminant Analysis or PLS-DA) (David, 2008).

Although, there have been several studies on the antidiabetic activity of OS, none of them thoroughly described the alteration of blood glucose regulation or other DM biomarkers in both urine and serum profiles using metabolomics approach. Recently, metabolomics study has rapidly progressed and has provided mechanistic insights into biochemical activity. Hence, the validity of the model on anti-diabetic alteration using metabolomics approach will furnish better understanding of chemical profile on the extracts, their anti-diabetic properties and affected pathways. Taking all of
these into account, in this present study the streptozotocin-induced diabetic rats were treated with different OS extracts in 14 days to address all of the mentioned issues with the main aims to:

1. identify the different polarity of OS extracts that have the highest anti-diabetic effect observed through urine and serum profiles in diabetic rats after 14 days of oral administration
2. develop a validated model of NMR chemical profile of extracts and their anti-diabetic activity using Multivariate Data Analysis for the prediction of the bioactivity of new OS extracts
3. propose the metabolism pathway affected by the OS treatment in diabetic rats
REFERENCES

Hegnauer, R.H. (1966) *Chemotaxonomic der planzen* (Vol. 4), Birkhäuser Verlag, Stuggart, 45-90

2ODK15DGX/0RJRoeDQ&+DQJDQX’*RFDQ6 3KWRFKHPLFDO and pharmacological studies on *Orthosiphon stamineus* Benth.

Zhang, W., Ding, H., Zhang, J. & Tu, X. (2008). 1H, 13C and 15N resonance assignment of Urm1 from *Trypanosoma brucei*. *Biomolecular NMR Assignments, 2*(1), 59-60.

