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A series of batch laboratory studies were conducted in order to investigate the 

practicability of palm kernel shell (PKS)-based activated carbon for removal of basic 

dye, Basic Blue 9 (BB 9) and acid dye, Acid Orange 52 (A0 52) from their aqueous 

solutions. Three different particle sizes of PKS were used and categorized as PKS - 

S, PKS - M and PKS - L. The adsorption capacities of the PKS-based activated 

carbons were compared with those of commercial grade coal-based activated 

carbons at the same conditions. All batch experiments were carried out at a constant 

temperature of 28°C (22°C) using incubator shaker that operated at 150 rpm. 

Batch equilibrium study shows that Adsorption of BB 9 and A 0  52 were highly pH 

dependent. Removal of BB 9 increased with pH with maximum removal observed at 

pH 7.0, and decreased thereafter with further increase in the initial pH. However, pH 

effect on A 0  52 removal shows that A 0  52 removal decreased with an increase in 

initial pH with the optimum initial was observed at 3.5. 



Batch equilibrium data also a had good agreement with the Langmuir, Freundlich 

and Redlich-Peterson isotherm models with correlation coefficients > 0.9. Overall, 

the Redlich-Peterson isotherm showed the best fit for all adsorbents under 

investigation in terms of correlation coefficient as well as error analysis of the 

results. For all the systems in this study, the analysis of isotherm shape factor 

showed that adsorption was favorable. 

For the adsorbents under investigation, PKS-S has the highest adsorption capacity 

followed by PKS-M. PKS-L and commercial coal based pellet form have almost 

equally-balanced adsorption capacity. Of all the adsorbents, commercial coal-based 

in powder form exhibits the lowest adsorption capacity. Obtained results revealed 

that PKS based activated carbon is a highly potential alternative adsorbent for 

treatment of dye-containing wastewater. The maximum capacity of the adsorbents 

for BB 9 were 333.33 mg/g, 322.58 mg/g and 212.77 mglg for PKS - S, PKS - M 

and PKS - L, respectively, while for powder and pellet commercial grade coal 

based, the capacities were 204.08 mg/g and 217.39 mg/g, respectively. On the other 

hand, the maximum capacities of the same adsorbents for A 0  52 were 344.83 mg/g, 

333.33 mglg, 263.16 mg/g, 238.09 mg/g and 322.58 mg/g, respectively. Adsorption 

capacities of the same adsorbents were found to be higher for adsorption of A 0  52 

compared to those of BB 9 due to the smaller molecular size of the former. 

Batch kinetic studies were also performed to investigate the rate limiting of the 

adsorption process. Results obtained revealed that the adsorption of both BB 9 and 

A 0  52 was rapid at the beginning, but approached equilibrium slowly. 



Experimental data can be modeled using pseudo-second-order kinetic model as first 

order kinetic model does not represent the whole range of adsorption process. Other 

than that, intraparticle diffusion was found to be prominent at a certain stage of 

adsorption but it would not be the only limiting step that controlled the adsorption 

dynamic. 

Kinetic data also showed that the adsorption rates were a function of initial adsorbate 

concentration, adsorbent particle size and adsorbent mass. For all systems under 

consideration, the values of kZ increased significantly as adsorbent dose increases. 

Nevertheless, the values of k2 were inversely proportional to the initial adsorbate 

concentration and adsorbent particle size. On the other hand, values of k, were found 

to be directly proportional to the initial adsorbate concentration but decreased 

gradually as adsorbent particle size and adsorbent dose increases. 
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Satu siri ujikaji telah dijalankan di makmal untuk mengkaji kesesuaian penggunaan 

karbon teraktif daripada tempurung kelapa sawit (PKS) untuk menjerap bahan 

pewarna jenis bes, Basic Blue 9 (BB 9) dan jenis asid, Acid Orange 52 (A0  52) 

daripada larutan berair. PKS yang digunakan terdapat dalam tiga saiz dan 

dikategorikan sebagai PKS - S, PKS - M dan PKS - L. Dua jenis karbon teraktif 

komersial berasaskan kayu telah dikaji melalui eksperimen yang sama pada kondisi 

yang serupa bagi menaksir kapasiti penjerapan setiap PKS berbanding karbon 

teraktif komersial. Semua ujikaji dijalankan pada suhu tetap iaitu 28OC e2"C) 

menggunakan penggoncang inkubator yang beroperasi pada kelajuan 150 rpm. 

Penjerapan BB 9 didapati sangat dipengaruhi oleh pH larutan di mana penjerapan 

meningkat bila pH meningkat sehingga pH mencapai tahap optimum 7.0. selepas pH 

optimum, penjerapan menurun bila pH semakin meningkat. A 0  52 pula memerlukan 



keadaan larutan yang berasid untuk mencapai tahap penjerapan yang tinggi di mana 

penjerapan maksimum dicatatkan pada pH 3.5. 

Data keseimbangan didapati sesuai dengan model Langmuir, Freundlich dan 

Redlich-Peterson dengan nilai R2 > 0.9. Secara keseluruhannya, model isoterma 

Redlich-Peterson adalah paling sesuai untuk semua system yang dikaji berdasarkan 

nilai R2 yang tinggi serta nilai sisihan yang rendah. Antara semua sistem yang 

dikaji, didapati PKS - S mempunyai kapasiti penjerapan yang paling tinggi untuk 

kedua-dua pewarna diikuti oleh PKS - M. PKS - L mencatatkan kapasiti penjerapan 

yang hampir sama dengan karbon teraktif komersial jenis pellet manakala karbon 

teraktif komersial jenis debu mempunyai kapasiti penjerapan yang paling rendah. 

Kapasiti maksium bagi setiap karbon teraktif dalam penjerapan BB 9 ialah masing- 

masing 333.33 mglg, 322.58 mg/g dan 212.77 mg/g untuk PKS - S, PKS - M dan 

PKS - L manakala karbon teraktif komersial jenis debu dan pellet masing-masing 

mencatatkan nilai 204.08 mglg dan 2 17.39 mglg. Sementara itu, kapasiti penjerapan 

maksimum terhadap A 0  52 bagi setiap penjerap yang dinyatakan mengikut urutan di 

atas ialah 344.83 mglg, 333.33 mglg, 263.16 mg/g, 238.09 mg/g dan 322.58 mglg. 

Kajian kinetik juga dijalankan untuk mengkaji kadar penjerapan dan meneliti faktor- 

faktor yang menetukan kadar tersebut. Tiga jenis model telah diuji iaitu kinetik order 

pertama, kedua dan intrapartikel. Data kinetik didapati sesuai dengan model kedua 

dan model intrapartikel. Sementara itu, faktor kepekatan awal pewarna, saiz serta 

dos karbon teraktif yang digunakan didapati memberi kesan yang signifikan ke atas 

kadar penjerapan. 



Data kinetik juga menunjukkan bahawa nilai kz bagi semua sistem yang dikaji 

meningkat bila dos karbon teraktif meningkat tetapi berkadar songsang dengan 

kepekatan awal pewarna serta saiz karbon teraktif. Sementara itu, nilai kp didapati 

berkadaran secara terus dengan kepekatan awal pewarna tetapi peningkatan pada 

saiz dan dos karbon teraktif menyebabkan nilai kp berkurangan. 
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CHAPTER 1 

INTRODUCTION 

Background 

Around the world, chemical industries and manufacturing plants grow at an alarming 

rate in almost all countries, which released a broad range of harmful industrial wastes to 

the environment. Textile industries are among the areas that expanded rapidly to fulfil 

the increasing demand of world population. This industry consumes large volumes of 

water and chemicals for wet processing and due to inefficiencies in dyeing techniques, 

some of the dyes maybe discharged into waterways and if reactive dyes are used the dye 

loss can be up to 50% (Mc Mullan et al., 2001). Considering both volumes discharged 

and effluent composition, the wastewater generated by the textile industry is rated as the 

most polluting among all the industrial sectors (Reid and Green, 1996). Wastewater 

from the textile industry had also been declared as one of the major sources of 

wastewater in ASEAN countries in the year 2000 (Setamanit et al., 2002). 

The effluent discharged from the textile industry mainly contains dyes (organic and 

inorganic), wax, grease, heavy metals, surfactant and suspended solids (Ahmad et al., 

2002). Dye-containing wastewater has been reported to be difficult to treat using 

conventional wastewater treatment due to its recalcitrant nature. Due to their chemical 

structure, most dyes are resistant to fading on exposure to light, water and many 

chemicals (Robinson et al., 2001) and the structural complexity as well as synthetic 



origin make it very difficult to be decolourised and decomposed biologically. 

Wastewater containing dyes must be properly treated before being discharged to the 

environment because even when released in small concentrations, it will impart colour 

that will consequently reduce the aesthetical value to the receiving water. It will also 

impede light penetration to the water body. These dyes were also found to have a 

potential chronic health hazard to human beings and other adverse impacts such as 

toxicity to aquatic life. 

1.2 Environmental Regulations For Wastewater Generated From Textile 

Industry 

The Malaysian government gazetted The Environmental Quality Act 1974 and 

Environmental Quality (Prescribed Premises) (Scheduled Wastes Treatment and 

Disposal Facilities) Regulations 1979 to inhibit indiscriminate discharge of effluent from 

textiles industries into the watercourse. Other than that, the effluent from textile 

industries has to be treated to meet regulatory standards as specified in Environmental 

Quality (Sewage and Industrial Effluents) Regulations 1979 whilst all factories from 

textile industries have also to comply with Environmental Quality (Scheduled Wastes) 

Regulations 1989. 



1.3 Treatment Method 

Due to more stringent legislation, several studies have been performed to find an 

effective and economical way for treatment of dye-containing wastewater. Those studies 

can be categorised into three; physical, chemical and biological methods as shown in 

Table 1.1. 

Table 1.1 Advantages and disadvantages of the current methods of dye removal from 
industrial effluents (Compiled and modified from Robinson et a]., 2001) 

Treatment methods Advantages Disadvantages 

Fentons reagent 

Ozonation 

Photochemical 

NaOCl 

Cucurbituril 

Electrochemical 
destruction 

Activated carbon 

Peat 

Wood chips 

Effective decolourisation of both Sludge generation 
soluble and insoluble dyes 

Applied in gaseous state: no 
alteration of volume 

No sludge production 

Short half-life (20 minutes) 

Formation of by-product 

Initiates and accelerates azo-bond Release of aromatic amines 
cleavage 

Good sorption capacity for 
various dyes 

High cost 

Breakdown compounds are non- High cost of electricity 
hazardous 

Good removal of wide variety of Very expensive 
dyes 

Good adsorbent due to cellular 
structure 

Specific surface areas for 
adsorption are lower than 
activated carbon 

Good sorption capacity for acid Requires long retention 
dyes times 

Silica gel Effective for basic dye removal Side reactions prevent 
commercial application 


