UNIVERSITI PUTRA MALAYSIA

CLONING, EXPRESSION AND CHARACTERIZATION OF ANTIFUNGAL PROTEIN GENE (ENDO-β-1,3-1,4-GLUCANASE) FROM Bacillus sp. STRAIN 289 AGAINST SHEATH BLIGHT DISEASE PATHOGEN, *Rhizoctonia solani*

SITI NORAINI BINTI BUNAWAN

FBSB 2015 1
CLONING, EXPRESSION AND CHARACTERIZATION OF ANTIFUNGAL PROTEIN GENE (ENDO-\(\beta\)-1,3-1,4-GLUCANASE) FROM \textit{Bacillus} sp. STRAIN 289 AGAINST SHEATH BLIGHT DISEASE PATHOGEN, \textit{Rhizoctonia solani}

By

SITI NORAINI BINTI BUNAWAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2015
CLONING, EXPRESSION AND CHARACTERIZATION OF ANTIFUNGAL PROTEIN GENE (ENDO-β-1,3-1,4-GLUCANASE) FROM *Bacillus* sp. STRAIN 289 AGAINST SHEATH BLIGHT DISEASE PATHOGEN, *Rhizoctonia solani*

By

SITI NORAINI BINTI BUNAWAN

Oktober 2015

Chair : Associate Prof. Mohd. Yunus Abd. Shukor, PhD
Faculty : Biotechnology and Biomolecular Sciences

Rhizoctonia solani is a destructive fungal that caused sheath blight disease in rice. Infection by *R. solani* has caused a serious threat and yield loss in rice industry worldwide. The management of sheath blight disease is mainly through chemical control but it is not considered as long term solution due to environmental and health concerns. Therefore, as an alternative option by using biological control agent, this study was done with the objective to isolate antagonist bacteria against *R. solani*. This research is also aimed to isolate, express and characterize potential antifungal protein, endo-β-1,3-1,4-glucanase (*βglu*) from the best isolated antagonist bacteria using protein recombinant technology. A total of 390 pure culture bacteria were isolated from 60 soil samples collected from six different paddy field locations in Seberang Perai, Penang. Subsequently, the isolates were screened for growth inhibition activity on *R. solani*. There were 13 isolates exhibited antifungal activity with the highest inhibition zone was 22 ± 0.58 mm. Isolate with the highest inhibition zone was proceed for bacterial genus identification. Based on the biochemical profile identification results, 16S rRNA BLAST sequence analysis and phylogenetically related microorganism, the isolate SP 289 is in the genus of *Bacillus* and therefore is assigned tentatively as *Bacillus* sp. 289. Isolation of *βglu* showed an open reading frame of 720 bp in length which codes for 239 amino with molecular weight of 26.7 kDa. The gene was then cloned into pRSET A as expression vector and expressed in *E. coli* BL21. IPTG was used to induce the expression of the T7 RNA polymerase. The optimum time for the growth of *E. coli* BL21 to express the highest production of *JOX* was at one hour after induction with the IPTG. The recombinant *βglu* was purified through affinity column using Ni-NTA resin. Characterization of the recombinant *JOX* enzyme showed optimum activity at 50 °C and optimum pH at pH 6. Enzyme activity was retained at almost 100 % after being preincubated for 30 minutes between 30 °C to 50 °C while pH stability profile showed the activity remained above 68 % at pH ranging from pH 5 to pH 10 upon treatment at 50 °C for 30 minutes in various buffers. Initial rates of *JOX* against lichenan concentration exhibited a *K_m* of 7.29 ± 2.57 mg/mL and a *V_{max}* of 68.16 ± 10.42 U/mg.
Bioassay test against the sheath blight pathogen was also done. The recombinant \textit{JOX} was found to inhibit the growth of \textit{R. solani} mycelium and the inhibition was increased with the increased of enzyme concentration. With this finding, \textit{JOX} enzyme has potential as biological control for \textit{R. solani} while the gene can be use in the development of transgenic rice resistant to sheath blight disease. This is the first report regarding the antifungal activity of endo-\textit{β}-1,3-1,4-glucanase enzyme isolated from bacteria especially in inhibiting the growth of \textit{R. solani}.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGKLONAN, PENGEKSPRESSAN DAN PENCIRIAN GEN ANTIFUNGUS (ENDO-\(\beta\)-1,3-1,4-GLUCANASE) DARI Bacillus sp. STRAIN 289 ANTAGONIS TERHADAP PATOGEN PENYAKIT HAWAR SELUDANG, Rhizoctonia solani

Oleh

SITI NORAINI BINTI BUNAWAN

Oktober 2015

Pengerusi: Prof. Madya. Mohd Yunus Abd. Shukor, PhD
Fakulti: Bioteknologi dan Sains Biomolekular

Rhizoctonia solani adalah kulat perosak yang menyebabkan penyakit hawar seludang pada pokok padi. Jangkitan oleh kulat ini telah menyebabkan ancaman dan kerugian yang serius kepada industri beras di seluruh dunia. Pengurusan kawalan penyakit ini yang utama adalah secara kawalan kimia. Namun ia dianggap sebagai bukan penyelesaian untuk jangka masa panjang berikutan kebimbangan kesan racun terhadap alam sekitar dan kesihatan manusia. Oleh itu sebagai alternatif menggunakan kawalan secara biologi, kajian ini dijalankan dengan objektif untuk memencilkan bakteria yang bersifat antagonis terhadap \(R.\) solani. Kajian juga bertujuan untuk memencilkan, mengekspress dan melakukan pencirian terhadap protein, endo-\(\beta\)-1,3-1,4-glucanase (\(\beta\)glu) yang berpotensi sebagai antikulat menggunakan kaedah teknologi protein rekombinan dari bakteria antagonis terbaik yang telah berjaya dipencilkan. Sebanyak 390 bakteria telah dipencilkan dari 60 sampel tanah sawah yang diambil dari enam lokasi penanaman padi di Seberang Perai, Pulau Pinang. Kesemua bakteria tersebut telah diuji keupayaan untuk merencat pertumbuhan miselium \(R.\) solani. Sebanyak 13 pencilan bakteria didapati mempunyai sifat antagonis terhadap \(R.\) solani dengan zon perencatan terbesar adalah 22 ± 0.58 mm. Bakteria yang menghasilkan zon perencatan terbesar telah dilakukan pengecaman secara biokimia, analisis 16S rRNA dan analisis filogenetik. Pencilhan SP 289 telah di kenalpasti sebagai Bacillus. Oleh itu, ia di namakan sebagai Bacillus sp. 289. \(\beta\)glu telah berjaya dipencilkan dan gen mempunyai jujukan rangka terbuka 720 bp yang mengkodkan sebanyak 239 asid amino dengan berat molekul 26.7 kDa. Gen tersebut telah berjaya dikelonkan ke dalam vektor pRSET A dan diekspresskan di dalam hos \(E.\) Coli BL21. IPTG digunakan untuk mengaruh pengekspressan T7 RNA polimerase. Tempoh masa optimum pengekspressan \(\beta\)glu rekombinan oleh hos \(E.\) Coli adalah satu jam selepas diaruh menggunakan IPTG. \(\beta\)glu kemudiannya ditulenkan melalui kolum afiniti menggunakan resin Ni-NTA. Pencirian biokimia protein \(\beta\)glu menunjukkan aktiviti optimum pada suhu 50 °C dan pH 6. Ujian stabilititi suhu pula menunjukkan aktiviti enzal aktif hampir 100 % walaupun selepas dieram selama 30 minit pada suhu 30 hingga 50 °C.
Kestabilan pH menunjukkan aktiviti yang kekal aktif melebihi 68 % pada pH 5 hingga pH 10 apabila dieram selama 30 minit dalam pelbagai larutan penimbal. Kadar awal JOX terhadap kepekatan substrat lichenan mempamerkan nilai K_m 7.29 ± 2.57 mg/mL dan nilai V_{max} 68.16 ± 10.42 U/mg. Ujian bioasai terhadap R. solani mendapati, enzim JOX berupaya merencat pertumbuhan R. solani. Perencatan juga didapati bertambah besar dengan peningkatan kepekatan enzim. Ini membuktikan bahawa protein JOX bersifat antikulat dan berpotensi untuk digunakan sebagai agen kawalan biologi bagi merencat pertumbuhan R. solani manakala gen boleh digunakan untuk menghasilkan pokok padi transgenik yang rintang terhadap penyakit hawar seludang. Penemuan ini adalah yang pertama mengenai aktiviti antikulat oleh endo-β-1,3-1,4-glucanase yang dipencilkan dari bakteria yang berjaya merencat pertumbuhan R. solani.
ACKNOWLEDGEMENTS

All praises are due to Allah, Lord of the universe for strength, wisdom and grace in times when human abilities fail. Only by His grace and mercy this thesis can be completed.

I would like to express my gratitude to individuals who played important roles in completion of this study. First and foremost, thank you to my supervisor, Associate Professor Dr. Mohd. Yunus Abd. Shukor for giving me the opportunity to enter a post-graduate career, having faith in my progress and supporting, advising and inspiring me throughout. Also, most sincere thanks to my co-supervisor, Dr Marzukhi Hashim and Professor Dr. Ariff for their valuable advice and teachings concerning both moral and scientific issues.

My deepest appreciation to my beloved husband, Mohd Hafiz Mat Khairuddin for his love, support and motivation throughout this journey. Also to my kids; Ashalina, Jazmina and Nukman. Many thanks to my mother, Asmah Shahlan, and my siblings especially for their support and willing to take care of my children during my busy days doing experiments and writing thesis were really appreciated and unforgettable.

Lastly, special word of thanks especially to Noriha Mat Amin, all the members of Genomik laboratory at Biotechnology Research Center, MARDI and all my friends for their generous contributions, assistance regarding the experimental procedures, unlimited guidance, advice, and suggestion.
I certify that a Thesis Examination Committee has met on 26 October 2015 to conduct the final examination of Siti Noraini binti Bunawan on her thesis entitled "Cloning, Expression and Characterization of Antifungal Protein Gene (Endo-β-1,3-1,4- Glucanase) from Bacillus sp. Strain 289 Against Sheath Blight Disease Pathogen, Rhizoctonia solani" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Noorjahan Banu binti Mohammed Aliheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Janna Ong binti Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Aziz bin Ahmad, PhD
Professor
Universiti Malaysia Terengganu
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 February 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd. Yunus Abd. Shukor, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Arif Syed, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Marzukhi Hashim, PhD
Head of Division
Biotechnology Research Centre
Malaysian Agricultural Research & Development Institute (MARDI)
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Siti Noraini Binti Bunawan GS 21704
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___
Name of Chairman of Supervisory Committee: Mohd. Yunus Abd. Shukor, PhD

Signature: ___
Name of Member of Supervisory Committee: Mohd Arif Syed, PhD

Signature: ___
Name of Member of Supervisory Committee: Marzukhi Hashim, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 *Rhizoctonia solani*
 2.1.1 Rice sheath blight disease
 2.1.2 Life cycle and epidemiology
 2.1.3 Signs and symptoms of sheath blight disease
 2.1.4 Predisposing factor

2.2 Management of Rice Sheath Blight disease
 2.2.1 Varietal resistance
 2.2.2 Chemical control

2.3 Biological control

2.4 Bacterial antagonist against *Rhizoctonia solani*

2.5 Fungal cell wall

2.6 Glucanases

2.7 Glucanase as antifungal protein
 2.7.1 β-1,3-glucanase
 2.7.2 β-1,3-1,4-glucanase

2.8 Effect of temperature and pH on stability and activity on enzyme

2.9 Production of recombinant protein

2.10 Expression of desired proteins in prokaryotic system

2.11 Secretory protein expression analysis by SDS-PAGE

2.12 Detection of recombinant protein

2.13 Purification of tagged recombinant protein
 2.13.1 Affinity tag using polyhistidine
 2.13.2 The use of Ni-NTA resin in recombinant protein purification

3 METHODOLOGY

3.1 Materials

3.2 General method

3.3 Isolation of Antagonist Bacteria against Rice Sheath Blight Disease
 3.3.1 Soil sampling
 3.3.2 Soil sample preparation
3.3.3 Screening of fungal antagonism 23

3.4 Antagonist bacteria identification 23
3.4.1 Biochemical profile identification using API System 23
3.4.2 16S ribosomal RNA analysis 23

3.5 Isolation and cloning of JOX gene 25
3.5.1 PCR amplification of JOX gene 25
3.5.2 Purification of amplified JOX gene 26
3.5.3 Preparation of competent cell 26
3.5.4 Cloning of JOX gene into cloning vector 26
3.5.5 Extraction of recombinant plasmid 27
3.5.6 Restriction endonuclease (REN) analysis 27

3.6 Sequence analysis of JOX gene 27

3.7 Subcloning of JOX gene into expression vector 28
3.7.1 Ligation into expression vector 28
3.7.2 Heat shock transformation of E. coli 28
3.7.3 Plasmid extraction 28
3.7.4 Restriction endonuclease analysis 28

3.8 Expression of JOX in E. coli 29
3.8.1 Small scale expression 29
3.8.2 Scale-up of expression 29

3.9 Analysis of recombinant JOX 29
3.9.1 Quantitative determination of JOX activity 29
3.9.2 Determination of protein concentration 30
3.9.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis 30
3.9.4 Western Blot analysis 30

3.10 Purification of recombinant JOX 31
3.11 Characterization of recombinant JOX 31
3.11.1 Effect of temperature on JOX activity 31
3.11.2 Thermostability of JOX activity 32
3.11.3 Effect of pH on JOX activity 32
3.11.4 pH stability of JOX activity 32
3.11.5 Enzyme kinetic analysis 33
3.11.6 Bio-assay test of recombinant Eglu against R. solani 33

4 RESULTS AND DISCUSSION 34
4.1 Isolation of antagonist bacteria against Rice Sheath Blight pathogen 34

4.2 Identification of the antagonist bacteria 36
4.2.1 Morphological observations and Gram staining of SP289 36
4.2.2 Biochemical identification using API System 38
4.2.3 16S ribosomal RNA analysis 41

4.3 Isolation and cloning of endo-ß-1,3-1,4-glucanase gene (JOX) 46
4.3.1 Genomic DNA extraction 46
4.3.2 PCR amplification and cloning of Eglu gene 48
4.3.3 Restriction enzyme analysis of the recombinant plasmid

4.4 Sequence analysis of JOX gene
4.4.1 Nucleotide and amino acids sequence similarity analysis
4.4.2 Phylogenetic tree of JOX
4.4.3 Conserved motif and catalytic residue
4.4.4 Amino acids composition
4.4.5 Structure prediction of JOX

4.5 Cloning of JOX in expression vector

4.6 Expression of JOX in E. coli

4.7 Purification of recombinant JOX from Bacillus sp 289

4.8 Characterization of purified JOX
4.8.1 Effect of temperature on JOX activity
4.8.2 Thermostability of JOX activity
4.8.3 Effect of pH on JOX activity
4.8.4 pH stability of JOX activity
4.8.5 Kinetic of the purified JOX
4.8.6 Antifungal effect of JOX on R. solani growth

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summarize of antagonist bacteria against R. solani in various diseases and plants</td>
</tr>
<tr>
<td>2</td>
<td>Types of glucanases and their function</td>
</tr>
<tr>
<td>3</td>
<td>Techniques used according to protein properties during purification</td>
</tr>
<tr>
<td>4</td>
<td>List of bacterial isolates exhibited inhibition against Rice Sheath Blight pathogen (R. solani)</td>
</tr>
<tr>
<td>5</td>
<td>Results of biochemical test on isolated SP289 using API 50CHB</td>
</tr>
<tr>
<td>6</td>
<td>Results of biochemical test on isolated SP289 using API 20E</td>
</tr>
<tr>
<td>7</td>
<td>Basic Local Alignment Search Tool (BLAST) result of partial sequence of 16S ribosomal RNA gene from SP289</td>
</tr>
<tr>
<td>8</td>
<td>Purity checking of extracted genomic DNA of Bacillus sp 289 spectrophotometrically</td>
</tr>
<tr>
<td>9</td>
<td>Amino acids composition in JOX from Bacillus sp. 289</td>
</tr>
<tr>
<td>10</td>
<td>Summary of the purification of His-tagged recombinant of JOX</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>The life cycle of sheath blight pathogen</td>
</tr>
<tr>
<td>2</td>
<td>Symptoms of sheath blight disease</td>
</tr>
<tr>
<td>3</td>
<td>Components of fungal cell wall</td>
</tr>
<tr>
<td>4</td>
<td>The enzyme activity increases with the increase of temperature and start to decrease with further increase of temperature</td>
</tr>
<tr>
<td>5</td>
<td>A bell shape curve, the graph of pH against the reaction rate</td>
</tr>
<tr>
<td>6</td>
<td>Protein structure before and after treatment with SDS</td>
</tr>
<tr>
<td>7</td>
<td>Anti-His/Enzyme-labelled Secondary Antibody</td>
</tr>
<tr>
<td>8</td>
<td>Nickel ions bound to the metal chelator (NTA) via 4 coordination sites</td>
</tr>
<tr>
<td>9</td>
<td>Inhibition zone on mycelia of Rhizoctonia solani inoculated with isolated SP289 after incubated at room temperature for 3 days</td>
</tr>
<tr>
<td>10</td>
<td>Isolate SP289 colony on nutrient agar plate after incubated at 37 °C for 16 hours</td>
</tr>
<tr>
<td>11</td>
<td>Photomicrograph of Isolate SP289 using Nikon Eclipses 50i (Japan) after undergoing Gram staining procedures</td>
</tr>
<tr>
<td>12</td>
<td>Agarose gel electrophoresis of PCR product of 16S rRNA gene from Isolate SP289</td>
</tr>
<tr>
<td>13</td>
<td>Partial sequence of 16S ribosomal RNA gene from Bacillus sp 289 consist of 1391 nucleotide</td>
</tr>
<tr>
<td>14</td>
<td>Neighbour-joining method cladogram showing phylogenetic relationship between strain SP289 and other related reference microorganisms based on their 16S ribosomal RNA sequence analysis</td>
</tr>
<tr>
<td>15</td>
<td>Agarose gel electrophoresis of genomic DNA extraction of Bacillus sp 289</td>
</tr>
<tr>
<td>16</td>
<td>PCR amplification of JOX (720 bp)</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>17</td>
<td>Enzyme restriction analysis of PCR amplified fragment of JOX into TOPO 2.1 sequencing vector</td>
</tr>
<tr>
<td>18</td>
<td>Nucleotide sequence of JOX from Bacillus sp. 289 and deduced amino acid sequence</td>
</tr>
<tr>
<td>19</td>
<td>Phylogenetic analysis of JOX from Bacillus sp. 289 using Neighbor-Joining method across different species of Bacillus</td>
</tr>
<tr>
<td>20</td>
<td>Conserved region of several endo-β-1,3-1,4-glucanases from different Bacillus species and other bacterial genus</td>
</tr>
<tr>
<td>21</td>
<td>Enzyme restriction analysis of PCR amplified fragment of JOX into pRSET A expression vector</td>
</tr>
<tr>
<td>22</td>
<td>Sequence analysis of JOX in pRSET A expression vector</td>
</tr>
<tr>
<td>23</td>
<td>Time course of recombinant JOX expression in E. coli BL21</td>
</tr>
<tr>
<td>24</td>
<td>Time course of recombinant JOX expression in E. coli BL21 analyzed by SDS-PAGE and western blot</td>
</tr>
<tr>
<td>25</td>
<td>SDS-PAGE (12%) of His-tagged recombinant βlu purified through Ni-NTA His Bind Resin Affinity Column</td>
</tr>
<tr>
<td>26</td>
<td>Effect of temperature on JOX activity ranging from 20 °C to 80 °C</td>
</tr>
<tr>
<td>27</td>
<td>Effect of temperature on JOX stability for 30 min</td>
</tr>
<tr>
<td>28</td>
<td>pH optimum of JOX activity</td>
</tr>
<tr>
<td>29</td>
<td>pH stability of JOX activity</td>
</tr>
<tr>
<td>30</td>
<td>Saturation curve of JOX reaction using lichenan as the substrate in various concentrations ranging from 1 mg/ml to 20 mg/ml</td>
</tr>
<tr>
<td>31</td>
<td>Lineweaver- Burk plot for JOX against lichenan as the substrate</td>
</tr>
<tr>
<td>32</td>
<td>Antifungal activity of JOX in different amount (5, 10 and 15 µg) on R. solani mycelial growth after 3 days incubation at room temperature</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

°C Degree Celsius
JOX endo-β-1,3-1,4-glucanase
μg Microgram
μl Microlitre
μM Micromolar
Abs Absorbance
Abs₆₀₀ Absorbance at 600nm
Abs₅₆₀ Absorbance at 560nm
Abs₅₄₀ Absorbance at 540nm
APS Ammonium persulphate
BLAST Basic local alignment search tool
bp Base pair
BCA Bicinichonic acid
BSA Bovine serum albumin
Da Dalton
DEPC Diethylpyrocarbonate
dH₂O Distilled water
DNA Deoxyribonucleic acid
DNase Deoxyribonuclease
dNTP Deoxyribonucleotide triphosphate
EDTA Ethylenediaminetetraacetic acid
et al. and others
EtOH Ethanol
g Gram
g/L gram per liter
HCl Hydrochloric acid
h Hour
kDa kilo dalton
min Minute
ml Millilitre
mm Millimetre
mM Millimolar
MW molecular weight
NCBI National Center for Biotechnology Information
NJ Neighbor-joining
PCR Polymerase chain reaction
pH “Power (or potential) of hydrogen”
PVPDF Polyvinylidene fluoride
RNA Ribonucleic acid
rpm rotation per minute
RT-PCR Reverse transcriptase polymerase chain reaction
RT room temperature
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis
UV ultraviolet
LB Luria Bertani
TCA trichloroacetic acid
ms millisecond

xvi
Sec second
SLS sodium lauryl sulphonate
TEMED N,N,N, N-Tetramethylenediamide
U/ml unit per milliliter
v/v volume per volume
w/v weight per volume
x g gravity
V Volt
vol volume
V/cm volt per centimeter
kb kilobase
U unit
Ta Annealing temperature
TAE Tris, acetic acid, EDTA
Taq Thermus aquaticus
Tm Melting temperature
U Units
UV Ultraviolet
V Voltage
v/v Volume per volume
w/v Weight per volume
CHAPTER 1

INTRODUCTION

Microbial antagonistic properties have created new opportunities in biological control technology. Several antagonist bacteria have been tested to have potential in inhibiting the growth of *Rhizoctonia solani*. *Bacillus* species are one of the most suitable bacterial candidates due to potent antifungal activity and their proven colonization aptitudes. The various suitable *Bacillus* species that have been reported include *B. subtilis* (Peng et al., 2013), *B. polymyxa* (Li et al., 2015), *B. vallismortis* (Park et al., 2006), *B. cereus* (Choudhary and Johri, 2009) and *B. megaterium* (Wiwattanapatapee et al., 2013).

R. solani is a fungal pathogen that caused sheath blight disease in rice. It has the capability to survive as mycelia within diseased plant material or as sclerotia for many years. The fungal can easily be transported into irrigation water, infested soil or through infected plant tissues during land preparation. Potential for seed-borne inoculums also exists (Taheri and Tarighi, 2011). In encouraging environmental conditions, especially in high moisture and temperature around 30 °C, the spread rate of the mycelia strands can be very fast. Moreover, the use of high rates of nitrogenous fertilizer, high rice plant population, double cropping and adaptation of high yielding rice plant through intensified rice production system recently have increased the incident and severity of the sheath blight disease (Wu et al., 2013). The disease contributes to the major yield loss of up to 50% in the rice industry worldwide (Liu et al., 2012, Taheri and Tarighi, 2011). In Malaysia, this disease was endemic in all major rice growing areas. It became the one of the worst diseases threatening the local rice industry after the seed broadcast system was adopted (Marzukhi, 2015). Apart from rice, this fungal pathogen also causes diseases to many other plant species such as lettuce, barley, maize, sorghum, bentgrass, bean, potato and tomato (Gkarmiri et al., 2015, Jeon et al., 2015, Solanki et al., 2012, Zhang et al., 2009).

Control of sheath blight disease is not easy due to several factors such as broad host range of the fungal pathogen, low inherent resistance of rice cultivars (Marzukhi, 2015, Taheri et al., 2007), and the variability of its genetic. Furthermore, its capability to survive in soil for many years has also contributed to the difficulties in managing the disease. Currently, managing of rice sheath blight is achieved majorly through chemical control (Bhuvaneswari and Raju, 2012). However, the use of pesticides is not recommended as a long term solution due to several environmental and health concerns (Mishra et al., 2015).

These matters have led to an alternative control method by using biological agent. 6LQFH -JOXFDQLVWKHPDLQFRPSRQHQWQLIXQJDOMHOEZBDO SODVQLPSRUWDQWUROHDVQWLIQJDOMSURLQ[WHQVLIQURGROYLVR] polymer by this enzyme has lead to fungal cell disruption by weakening the
mechanical strength of the cell walls. In the literature, antifungal activity was mainly observed in β-1,3-glucanases. These enzymes have been isolated from various sources including plants, fungi and bacteria. Previous studies also reported several number of β-1,3-1,4-glucanases which have been isolated and purified especially from bacteria. These enzymes are important in industrial applications especially in animal feeds production and brewing industries (Luo et al., 2010, Qiao et al., 2009, Beckmann et al., 2006). Little is known about the antifungal activity of β-1,3-1,4-glucanase since there are not many researchers who made reports regarding the antifungal activity of the enzyme (Britto et al., 2013, Luo et al., 2010). In 2013, study by Britto et al., has reported the antifungal activity of β-1,3-1,4-glucanase isolated from the cocoa plant Theobroma cacao. It was the first analysis showing antifungal activity of β-1,3-1,4-glucanase against Monilipthora perniciosa.

Although a number of previous studies have reported the isolation of β-1,3-1,4-glucanase there are no recent reports regarding the antifungal activity of this enzyme especially in inhibiting the mycelial growth of R. solani. Therefore, this research is conducted with the following objectives:

1. To isolate and identify antagonist bacteria against sheath blight pathogen, Rhizoctonia solani
2. To isolate potential antifungal protein gene (endo-β-1,3-1,4-glucanase) from the antagonist bacteria
3. To clone and express the recombinant antifungal protein in Escherichia coli
4. To characterize the recombinant antifungal protein
REFERENCES

Leelasuphakul, W., Sivanulsakul, P. and Phongpaichit, S. 2006. Purification, chaUDFWHULIDWLRQ DQG V\QiHUJLVWLF DP\Re]LQGI]U] and antibiotic extract from an antagonistic *Bacillus subtilis* NSRS 89-24 against rice blast and sheath blight. *Enzyme and Microbial Technology* 38: 990–997

Niu, Q., Zhang, G., Zhang, L., Ma, Y., Shi, Q. and Fu, W. 2015. Purification and characterization of a thermophilic 1,3-1,4-b-glucanase from *Bacillus methylotrophicus* S2 isolated from booklice. *Journal of Bioscience and Bioengineering* 1-6

pellet formulations to suppress sheath blight of rice caused by *Rhizoctonia solani*. *BioControl* 45: 245–256

Teng, D., Wang, J., Fan, Y., Yang, Y., Tian, Z., Luo, J., Yang, G. and Zhang, F. &ORQLQJRI -1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Applied Microbiology and Biotechnology 85: 1015-1023

megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites. *Enzyme and Microbial Technology* 81: 80–87

http://www.knowledgebank.irri.org/ipm/sheath-blight/symptoms.html