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The development of a simplified and rapid technique for the selective recovery of 

proteins from Bakers' yeast was undertaken. Purification of Glucose-6-phosphate 

dehydrogenase (G6PDH) from Saccharomyces cerevisiae was chosen demonstrate of 

this principle. Cell disruption is a mandatory first step in the recovery of intracellular 

products. The influence of the operational parameters of Dyno bead mill on the 

release of G6PDH and proteins study were studied, and demonstrated that 45 ~hr- '  

flow rate, 85% (v/v) bead volume, 10 ms" tip speed are optimum condition for 

protein released. The comparative study on expanded beds ion-exchange and affinity 

adsorbents for the purification of G6PDH from crude feed-stock was conducted. The 

use of Streamline DEAE (p-1.2 @-I) and UpFront Cibacron Blue 3GA (p-1.5 

gmL,-') in adsorption of G6PDH from Bakers' yeast is adapted in this study. 

Hydrodynamic performance testing indicated that UpFront adsorbent providing a 

more stable fluidized bed than Streamline adsorbent does. Due to consisting higher 

density, higher flow rate (225 to 450 cmhf') and biomass concentration (up to 30% 

W/V) could be applied on expanded UpFront adsorbent bed. In contrast, Streamline 

adsorbent only able to afford a range of flow rate, from 164.2 to 248.3 cmhr-' and 
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biomass concentration up to 20% wlv. For dye affinity system, there is a light 

reduction on dynamic binding capacity of BSA (1 1.1% to 27.8%) only as compare 

with ion-exchange system (43.1% to 68.6%) when the adsorption was conducted in 

the presence of intact yeast cells. The adsorption characteristics of the afiinity system 

were not greatly altered in the presence of cells in contrast to the results fiom a less 

selective ion-exchange system. It was demonstrated that dye aflhity chromatography 

had provided a higher purification factor (3.9 to 8.2) with as compared with ion- 

exchange chromatography (2.7 to 4.1) in G6PDH recovery. 
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Pembinaan suatu teknik yang mudah dan pantas untuk memulihkan protein daripada 

yis telah diusahakan. Pemulihan Glucose-6-phosphate dehydrogenase (G6PDH) 

daripada Saccharomyces cerevisiae telah dipilih sebagai tunjukan pada dasamya. 

Pemecahan sel microorganisma merupakan Iangkah pertama yang diperlukan dalam 

proses pemulihan enzim dalaman. Parameter operasi yang mempengaruhi proses 

pemecahan untuk melepaskan enzim (G6PDH) dan protein dalam loji Dyno telah 

dikaji, dan menunjukan bahawa kadar pengaliran, 45 ~hr- ' ,  isipadu m a d ,  85% (vh), 

kelajuan penghasut, 10 ms-' merupakan parameter operasi yang optimum bagi 

pelepasan protein. Kajian perbandingan dalam penggunaan penjerap "ion-exchange" 

dan "affinity" dalarn proses penulenan G6PDH daripada bekalan aslinya telah 

dijalankan. Penggunaan penjerap Streamline DEAE (p-1.2 gn~- ' )  and UpFront 

Cibacron Blue 3GA (p-1.5 g m ~ - ' )  dalam proses penjerapan G6PDH daripada yis 

telah disesuaikan dalam kajian hi. Pemeriksaan perlaksanaan hidrodinamik telah 

menunjukkan bahawa penjerap UpFront dapat memberikan lapisan mengembang 

yang lebih mantap jika dibanding dengan penjerap Streamline. Oleh sebab penjerap 

UpFront mengandungi ketumpatan yang leblh tinggi, dan seterusnya membolehkan 



kadar pengaliran (225 hingga 450 cmhr-I) dan bio-jisim (30% wlv) yang lebih tinggi 

dapat disesuaikan dalam twus lapisan mengembang. Sebaliknya, penjerap 

Streamline hanya dapat mengatasi kadar pengaliran, dari 164.2 hingga 248.3 cmhr-' 

dan bio-jisim sebanyak 20% wlv sahaja. Bagi sistem "dye aflhity", kapasiti 

penjerapan dalam lapisan mengembang hanya mengalami pengurangan yang sedikit 

sahaja (1 1 -1 % hingga 27.8%) jika dibanding dengan sistem "ion-exchange" (43.1% 

hingga 68.6%) apabila penjempan dijalankan dalam keadaan kehadiran keseluruhan 

sel yis (tanpa pemecahan). Ciri-ciri penjerapan bagi sistem "afiinity" hanya 

mengalami perbezaan yang minimum dan ia arnat berbeza daripada sistem "ion- 

exchange" yang kurang memilih. Kromatografi "dye affinity" telah menunjukkan 

faktor penulenan yang lebih tinggi (3.9 hingga 8.2) jika dibandingkan kromatografi 

"ion-exchange" (2.7 hingga 4.1) dalam proses pemulihan G6PDH. 
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CHAPTER 1 

INTRODUCTION 

The success in simplifLing industrial practice with the latest biotechnology is the 

ultimate responsibility of the bio-process and bio-chemical engineering profession. 

The advances in recovery, separation, and purification techniques used in 

downstream processing may play a crucial role in the development of large scale 

biotechnology. Downstream operations are crucial stages in terms of maintaining 

product characteristics and activity aiming at hi# yield and purity and cost saving. 

A dominant cost element in the production of the biological origin can be 

downstream operations. This is particularly true when the application of the product 

demands a very high level of product purity. For an example the cost ratio between 

fermentation and product recovery is approximately 60:40 fbr older antibiotics 

produced by fermentation. For newer antibiotics, third and fourth generation, the 

ratio is reversed to 40:60 fermentation to recovery. For recombinant DNA 

fermentation products such as therapeutic proteins the downstream purification 

accounts for 80 to 90% of the process costs (Dwyer, 1984). Downstream process unit 

operations included primary separation, product purification and product isolation. 

Disruption of the outer envelope of microbial cells is an essential step in the recovery 

of microbiaI products such as intracellular products. Mechanical methods are 

generally applicable for cell disruption, while the non-mechanical methods may be 

very effective but are restricted to special cases (Gaver & Huyghebaert, 1990). From 

an iodustrial applications point of view, only cell disruption technology based on 



mechanical technique has its potential use (Chisti & Moo-Young, 1986). Probably 

because of the high capital, operating costs and complexity of separation processes 

(especially disintegrated by chemical mean) for large scale recoveIy of intracellular 

products, non-mechanical methods lost its industrial potential use. Cell disruption in 

bead mill is considered as one of the most efficient techniques for the physical cell 

disruption (Darbyshire, 1981). A continuous protein production process involving 

disruption of 10% dry weight bakers' yeast and brewers' yeast in a 5 liter nominal 

capacity bead mill has been reported (Hedenskog & Morgan, 1973). A wide range of 

bacteria (E.coli, Bacillus sphaericus, Lactobacrllus conJirses, Brevibacterium 

ammmoniagenes and Bacillus subtilis) and fungus (S. cerevisiae, S. carlsbergensis, 

C. boidinii, C. utilzs) have been disrupted in bead mills (Chisti & Moo-Young, 1986). 

The traditional primary purification of the target molecule has been addressed by 

adsorption chromatography using a conventional packed bed of adsorbent. Before 

being further purified by traditional packed bed chromatography, centrifbgation and 

microfiltration are needed, in order to obtain a particle fi-ee solution. However, 

microfiltration has its drawbacks. The flux of liquid per unit membrane area is o h  

dramatically decreased, even though microfiltration could provide a particle free 

solution. During the filtration process, fouling of the microfiltration membrane is 

another critical problem that significantly adds to the operational cost. Normally, the 

combined use of centrifugation and microfitration may result in long process time 

and cause significant additional costs for equipment maintenance. It also brought in 

significant product loss due to product deterioration, especially the intracellular 

products. Consequently, direct adsorption from crude feed-stocks potentially offers 



significant reduction of process time and costs compared to traditional processes 

(Chase, 1994; Chase & Draeger, 1992). 

Expanded bed adsorption (EBA) is a technique which was created to circumvent all 

the drawbacks of conventional downstream processing. The process steps of 

clarification, concentration and initial purification can combine into one unit 

operation by using EBA technique. This leads to providing increased process 

economy due to a decreased number of process steps, increased yield, shorter overall 

process time (Suding & Tomusiak, 1993), reduced labor cost (Batt et al., 1995) and 

reduced running cost and capital expenditure (Schmidt et al., 1993). Further more, 

EBA technique is not only limited at laboratory process scale, it is available for 

scale-up and potentially offer industrial scale process. 

Expanded bed procedures are becoming increasingly popular in bio-separation as a 

way of avoiding the need for clarification techniques such as centrifugation and 

filtration (Chang et al., 1995; McCreath et a]., 1995). One step unit operation of 

capture target molecules fi-om crude feed-stock may reduce products degradation and 

avoiding bio-product handling problems. Expanded bed adsorption has postulated to 

be a versatile tool that can be applied on cells commonly used source materials. 

S u c c e s s ~ y  processing by expanded bed adsorption has been reported for E. coli 

homogenate (Daniels et al., 1996; Ollivier et al., 1996), E. coli lysate (Daniels et a/., 

1996; Johansson et al., 1996), yeast cell homogenate (Chang et a/., 1995; Chang & 

Chase, 1996), secreted products fi-om yeast (Blomqvist et al., 1996; Gellissen et al., 

1996; Zurek et al., 1996), whole hybridoma fermentation broth (Born et al., 1996; 

Lutkemeyer et al., 1996), myeloma cell culture (Jagersten et al., 1996), whole 



mammalian cell culture broth (Beck et al., 1996; Zapata et al., 1996) milk, and 

animal tissue extracts (Garg et al., 1996). 

The present work is focused on the development of a simplified and rapid technique 

for the selective recovery of intracellular enzyme fiom bakers' yeast. G6PDH was 

chosen as reference enzyme due to its high level present in Bakers' yeast and 

commercial value. The Dyno bead mill had been used in this work for effective 

release of G6PDH fiom yeast. Ion exchange and dye aflinity chromatography has 

been applied in this study. The matrices are Streamline DEAE and UpFront Cibacron 

Blue 3GA. UpFront Fastline20 was used as a contactor to recover glucose 6- 

phophate dehydrogenase (G6PDH) fiom Bakers' yeast homogenate. The 

performance of an anion exchanger, Streamline DEAE, (p-1.2 g n ~ - ' )  was studied 

and compared with UpFront adsorbent (p-1.5 g n ~ - ' )  immobilized with Cibacron 

Blue 3GA. The applicability and practicability of an innovative contactor 

characterized with mechanized stining flow distribution was explored. 


