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Considerable research interest has been directed towards the use of composite for 

crashworthiness applications, because they can be designed to provide impact energy 

absorption capabilities which are superior to those of metals when compared on 

weight basis. The use of composite parts in structural and semi-structure applications 

is becoming more widespread throughout the automotives, aircraft and space vehicles. 

In this study, an innovative lightweight composite energy-absorbing keel beam system 

has been developed to be retrofitted in aircraft and helicopter in order to improve their 



crashworthiness performance. The developed system consists of everting stringer and 

keel beam. The sub floor seat rails were designed as everting stringer to guide and 

control the failure mechanisms at pre-crush and post crush failure stages of composite 

keel beam webs and core. Polyurethane foam was employed to fill the core of the 

beam to eliminate any hypothesis of global buckling. The numerical prediction was 

obtained using commercially available finite element analysis software. The 

experimental data are correlated with predictions from finite element model and 

analytical solution. An acceptable agreement between the experimental and 

computational results was obtained. For all structures considered classical axial 

collapse eigen values were computed. 

The results showed that the crushing behaviour of the developed system is found to be 

sensitive to the change in keel beam core cross-section. Laminate sequence has a 

significant influence on the failure mode types, average crush loads and energy 

absorption capability of composite keel beam. The desired energy absorbing 

mechanism revealed that the innovated system can be used for aircraft and helicopter 

and meet the requirements, together with substantial weight saving. 
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Banyak kajian telah dijalankan dalam penggunaan komposit untuk kajian 

'crashworthiness' kerana komposit boleh direkabentuk untuk kebolehan penyerapan 

tenaga yang lebih tinggi jika dibandingkan dengan logam berasaskan berat. 

Penggunaan tiub bulat komposit dalam applikasi struktur dan semi-struktur semakin 

tersebar dalam industri automotif, pesawat dan kapal angkasa. 

Dalam kajian ini, sistem penyerapan tenaga alur lunas ringan yang inovatif telah 

dihasilkan untuk pemasangan dalam pesawat dan helikopter bertujuan untuk 



P 

memperbaiki prestasi 'crashworthiness'. Gelegar, everting membentuk re1 duduk 

sublantai bertujuan untuk membimbing dan mengawal mekanisma kegagalan pada 

web dan teras alur lunas komposit di tahap kegagalan pra-hancur dan selepas hancur. 

Polyurethane digunakan untuk membentuk teras alur tersebut agar lengkokan global 

dapat dihindarkan. Jangkaan numerikal diperolehi melalui perisian unsur terhingga 

komersil. Korelasi data eksperimen dengan data dari nurnerikal dan analitik dilakukan 

dan didapati ada persetujuan antara kedua-dua data eksperimen dan pengkomputeran. 

Nilai eigen runtuh sepaksi klasikal dikirakan untuk semua struktur yang 

dipertimbangkan. 

Hasil menunjukkan bahawa kelakuan penghancuran sistem yang dibina adalah peka 

terhadap perubahan keratan rentas teras alur lunas. Susunan lamina memberi kesan 

terhadap jenis mod kegagalan, beban purata hancur dan kebolehan penyerapan tenaga 

alur lunas komposit. Mekanisma penyerapan tenaga terhasil membuktikan bahawa 

system inovatif ini boleh digunakan untuk pesawat dan helikopter serta memenuhi 

semua keperluan disamping menjimatkan berat. 
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CHAPTER 1 

INTRODUCTION 

Structural crashworthiness becomes an essential requirement in the design of 

automobiles, rail cars and aerospace application. The structural crashworthiness covers 

the energy absorbing capability of collapsible and non-collapsible elements. The later 

is designed to provide a protective shell around the occupants i.e. post crash structural 

integrity. 

Traditionally, fuselages of fixed-wing transport aircrafts are made mostly of 

aluminium [I], a material with a considerable capacity for plastic deformation, hence, 

an inherent capability to absorb energy in crash situations. Since the last two decades, 

composite materials are used more extensively to build aircraft structures. However, 

the crashworthiness aspect related to composite structures has become a serious issue 

for many space organizations worldwide. For example, NASA Langley Research 

Center developed an innovative and cost-effective crashworthy fuselage concept for 

light aircraft and rotorcraft [I ,  1 11. 



Composite Keel Beam 

As stated earlier, the primary design goal for crashworthiness is to limit the impact 

forces transmitted to the occupants. To meet this objective, aircraft or rotorcraft sub- 

floor elements must be designed for high-energy absorption to prevent structural 

collapse during a crash [lo]. Yet, the sub-floor design must not be so stiff that 

transmits or amplifies high impact loads to the occupants. Ideally, the design should 

contain some crushable elements to control limit the loads transmitted to the occupant 

to survivable or non-injurious levels [2, 10 and 121. In this case, many investigations 

have been carried out on sub-floor using crushable elements [4, 5, 13, 14, 15, 16 and 

171. A lightweight energy-absorbing keel beam concept was developed and retrofitted 

in a general aviation-type aircraft and helicopter to improve crashworthiness 

performance [4, 131. For example, more recently in the year 2004 Airbus achieved a 

world premiere with the A340-600 model, which features the longest carbon fibre keel 

beam ever built for a civil airliner [18]. 

Research Objectives 

The primary objective of this current project is to develop a new composite keel beam 

to be used as main crush element in the aircraft sub floor. Accordingly the detailed 

objectives are: 

1. To design and fabricate everting elements to control composite keel beam 


