PROPERTIES OF STONE MASTIC ASPHALT SLABS COMPACTED USING A NEWLY DEVELOPED ROLLER COMPACTOR

By

FAUZAN MOHD. JAKARNI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

November 2006

DEDICATION

This thesis is dedicated specially to:

My lovely wife:

Nur Hanani Mansor

My parents: Mohd. Jakarni Mohd. Said L

Bedah Ishak

My parents-in-law:

Mansor Mohd. Lazim

Ľ

Zaniah Hashim

To my brothers and sisters

L

All family members and friends

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PROPERTIES OF STONE MASTIC ASPHALT SLABS COMPACTED USING A NEWLY DEVELOPED ROLLER COMPACTOR

By

FAUZAN MOHD. JAKARNI

November 2006

Chairman : Associate Professor Ratnasamy Muniandy, PhD

Faculty : Engineering

Pavement mix design procedures and specifications are usually derived from laboratory experiments conducted on materials that are to be used in the field. Therefore, laboratory experiments should be able to simulate to a high degree the conditions in the field, especially in term of compaction procedures. Stone Mastic Asphalt (SMA) is one type of asphalt mixtures that is highly dependent on the method of compaction as compared to conventional Hot Mix Asphalt (HMA) mixtures. As the future trends in asphalt pavement industry all over the world is gradually changing over to SMA due to its excellent performance characteristics, a suitable laboratory compaction method that can closely simulate field compaction is evidently needed. Therefore, this study is conducted in order to evaluate the Stone Mastic Asphalt (SMA) properties compacted using the newly developed Turamesin and thus to determine the ability and performance of Turamesin as an improved laboratory compaction method. This study comprises of three stages. In Study 1, a literature review was conducted in order to establish suitable methods for slab

compaction procedures. Preliminary compactions were then performed and data were analyzed to develop correlation between different compactive efforts and properties of the compacted slabs. From the analysis, 8 kgf/cm² of applied pressure and 75 numbers of passes of the roller compactor were required to achieve the ideal void content of 4%. Also, Turamesin was found to be capable of compacting slab within duration of 15 minutes, enabling 16 cylindrical core specimens of 100 mm to be cored out. In Study 2, a total of 15 slabs from three different types of asphalt binders, namely Grade 60/70, Grade PG76 and Grade 80/100 were prepared, measured and analyzed for consistency in terms of length, width and thickness. The results have indicated that the variability of the measured parameters of length, width and thickness were generally low as indicated by 0.26%, 0.18% and 1.44% of coefficient of variation respectively. Thus, it can be concluded that the slabs were uniformly compacted in terms of physical dimensions, resulted in average area of 590 mm by 500 mm and thickness ranging from 60 mm to 68 mm. Prior to Study 3, 100 mm and 200 mm diameter cylindrical core specimens were cored out from previously prepared SMA slabs, before being subjected to bulk density, air voids and other performance tests. Based on the analysis, it was found that the SMA slabs have uniformly distributed properties throughout the slabs with low percentage of coefficient of variation. The measured properties tend to agree with the expected performance and comparable to the common SMA mixtures performance. Therefore, it can be concluded that Turamesin was capable in compacting SMA slabs with uniformly distributed properties throughout the slab which indicate the efficiency and outstanding performance of Turamesin.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIFAT PAPAK ASFALT MASTIK BATUAN YANG DIPADATKAN DENGAN MENGGUNAKAN PEMADAT GOLEK YANG BARU DIBINA

Oleh

FAUZAN MOHD. JAKARNI

November 2006

Pengerusi : Profesor Madya Ratnasamy Muniandy, PhD

Fakulti : Kejuruteraan

Prosedur dan spesifikasi bagi rekabentuk campuran turapan biasanya diperolehi daripada eksperimen di makmal yang dijalankan ke atas bahan-bahan yang akan digunakan di lapangan. Maka, eksperimen di makmal haruslah mampu untuk mensimulasikan keadaan di lapangan dengan sebaik mungkin, terutamanya dari segi kaedah pemadatan. Asfalt Mastik Batuan (SMA) merupakan sejenis campuran asfalt yang amat bergantung kepada kaedah pemadatan, jika dibandingkan dengan Asfalt Campuran Panas (HMA). Disebabkan oleh arah tuju industri turapan di seluruh dunia mula beralih kepada campuran SMA, maka satu kaedah simulasi pemadatan lapangan di makmal adalah amat diperlukan. Kajian ini dijalankan untuk menentukan sifat-sifat Asfalt Mastik Batuan (SMA) yang dipadatkan dengan menggunakan Turamesin yang baru dibina dan seterusnya untuk menentukan keupayaan dan pencapaian Turamesin sebagai satu kaedah pemadatan di makmal yang lebih baik. Kajian ini terdiri daripada tiga peringkat. Di dalam Kajian 1, rujukan ilmiah telah dibuat bertujuan untuk menerbitkan satu kaedah pemadatan papak yang sesuai. Pemadatan awalan

kemudiannya dijalankan, dan data yang diperolehi dianalisa untuk mengkorelasikan pelbagai input pemadatan dengan sifat-sifat papak. Daripada analisa tersebut, tekanan gunaan sebanyak 8 kgf/cm² dan 75 laluan bagi pemadat golek diperlukan untuk mencapai nilai kandungan lompang optimum sebanyak 4%. Turamesin didapati mampu untuk memadatkan papak dalam tempoh 15 minit dan sebanyak 16 sampel teras silinder berdiameter 100 mm dapat diperolehi. Di dalam Kajian 2, sebanyak 15 papak daripada tiga jenis asfalt iaitu Gred 60/70, Gred PG76 dan Gred 80/100 telah disediakan, diukur dan dianalisa bagi menentukan nilai kekonsistenan. Keputusan yang diperolehi menunjukkan bahawa keberubahan parameter yang diukur dari segi panjang, lebar dan tebal papak secara umumnya adalah rendah, iaitu sebanyak 0.26%, 0.18% and 1.44% bagi nilai pekali variasi. Maka, dapatlah disimpulkan bahawa papak-papak tersebut telah dipadatkan untuk membentuk dimensi fizikal yang seragam dengan nilai keluasan purata sebanyak 590 mm kali 500 mm dan julat bagi ketebalan di antara 60 mm dan 68 mm. Bagi Kajian 3, papak-papak tersebut dikorek untuk mendapatkan sampel teras silinder berdiameter 100 mm dan 200 mm, sebelum analisa ketumpatan pukal, lompang udara serta pelbagai ujian pencapaian dijalankan. Berdasarkan kepada analisa tersebut, kesemua sampel papak didapati mempunyai keseragaman dari segi penyebaran sifat-sifat terukur, berdasarkan kepada nilai pekali variasi yang rendah. Sifat-sifat terukur didapati cenderung untuk menepati ciri-ciri jangkaan dan setanding dengan ciri-ciri campuran SMA secara umumnya. Kesimpulannya, Turamesin didapati mampu untuk menghasilkan papak yang mempunyai keseragaman dari corak penyebaran pelbagai sifat dan seterusnya membuktikan kecekapan dan sifat menonjol bagi Turamesin.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. I would like to express my sincere gratitude to my supervisor Associate Professor Dr. Ratnasamy Muniandy for providing me the opportunity to do this research and the guidance throughout the study. Equally, the appreciation is extended to other members of the supervisory committee, Ir. Salihudin Hassim and Associate Professor Dr. Ahmad Rodzi Mahmud for their continuous support during this study.

I want to acknowledge the Department of Civil Engineering, Universiti Putra Malaysia for providing facilities and support to this project. I am grateful to all the people whom are directly and indirectly involved in the project for their help and cooperation in this study.

Special thank is given to my lovely wife, Nur Hanani Mansor who always gives encouragement, support and advice that made my education possible and will never be forgotten.

Lastly I would like to thank my parents, Mohd. Jakarni Mohd. Said and Bedah Ishak, my parents-in-law, Mansor Md. Lazim and Zaniah Hashim, and as well as all members in my family and friends. Their love, encouragement, expectation and sacrifice are the origin of my inspiration.

I certify that an Examination Committee met on 9th November 2006 to conduct the final examination of Fauzan Mohd. Jakarni on his Master of Science thesis entitled "Evaluation of Stone Mastic Asphalt Properties Using the Newly Developed Roller Compactor" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Jamaloddin Noorzaei, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ir. Mohd. Saleh Jaafar, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Bujang Kim Huat, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Ir. Mohamed Rehan Karim, PhD

Professor Faculty of Engineering University of Malaya (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Ratnasamy Muniandy, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ir. Salihudin Hassim

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Ahmad Rodzi Mahmud, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 JANUARY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declared that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

FAUZAN MOHD. JAKARNI

Date: 18 DECEMBER 2006

TABLE OF CONTENTS

xi

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	х
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	xxi

CHAPTER

1	INT 1.1 1.2 1.3 1.4	RODUCTION General Background Problem Statement Objective of Study Scope of Study	1 1 3 6 7
	1.5	Thesis Layout	9
2	LIT	ERATURE REVIEW	10
	2.1	Asphalt Mix Design Method	12
		2.1.1 Aggregates Selection and Testing	13
		2.1.2 Asphalt Selection and Testing	14
		2.1.3 Determination of Optimum Asphalt Content	14
	2.2	Asphalt Mix Compaction	16
		2.2.1 California Kneading Compactor for Hveem Mix Design Method	18
		2.2.2 Marshall Impact Compactor for Marshall Mix Design Method	20
		2.2.3 Superpave Gyratory Compactor for Superpave Mix Design Method	22
	2.3	Other Types of Compactors	27
		2.3.1 Rolling Wheel Compactor	27
		2.3.2 Linear Kneading Compactor	30
		2.3.3 French Plate Compactor	31
	2.4	Comparative Studies of Laboratory Compaction Methods	33
	2.5	Laboratory Compaction versus Field Compaction	38
	2.6	Field Compaction	39
		2.6.1 Field Compaction Procedures	40
		2.6.2 Asphalt Multi-Integrated Roller (AMIR)	43
	2.7	Turamesin	45
	2.8	Stone Mastic Asphalt (SMA) and Specifications	47

Page

	2.9	Characterization of Asphalt Mixtures	50
		2.9.1 Bulk Density and Air Voids	50
		2.9.2 Marshall Stability and Flow	52
		2.9.3 Resilient Modulus	53
		2.9.4 Loaded Wheel Tracking (LWT)	56
		2.9.5 Fatigue Cracking	58
	2.10	Summary	61
3	MET	THODOLOGY	62
	3.1	Study 1: Criteria Establishment and Performance Analysis of	65
		Turamesin	
		3.1.1 Correlation Study of Turamesin Variables and Physical	66
		Properties of Asphalt Mix Slab	
	3.2	Study 2: Consistency Analysis of Stone Mastic Asphalt (SMA)	70
		Slabs	
		3.2.1 Physical Properties of Materials	70
		3.2.2 Marshall Mix Design Analysis	73
		3.2.3 Determination of Theoretical Maximum Density Using	76
		Rice Method	
		3.2.4 Slab Preparation and Analysis	78
	3.3	Study 3: Performance Tests and Analysis of Tura Slab Core	79
		Specimens	
		3.3.1 Sampling of Cylindrical Core Specimens	80
		3.3.2 Performance Tests	82
4	STU	DY 1: CRITERIA ESTABLISHMENT AND	91
	PER	FORMANCE ANALYSIS OF TURAMESIN	
	4.1	Details and Drawings of Turamesin	91
	4.2	Correlation of Turamesin Variables and Physical	96
		Properties of Asphalt Mix Slab	
	4.3	Performance of Turamesin	105
5	STU	DY 2: CONSISTENCY ANALYSIS OF STONE MASTIC	107
-	ASP	HALT (SMA) SLABS	- • ·
	5.1	Physical Properties of Materials	107
	5.2	Marshall Mix Design Analysis	109
	5.3	Preparation of Slab	118
	5.4	Analysis of Stone Mastic Asphalt (SMA) Slabs	121
		5.4.1 Length Analysis	122
		5.4.2 Width Analysis	126
		5.4.3 Thickness Analysis	129
	5.5.	Summary	136
		-	

6	STU	JDY 3: PERFORMANCE TESTS AND ANALYSIS OF	138
	TUI	RA SLAB CORE SPECIMENS	
	6.1	Bulk Density and Air Voids Analysis	140
		6.1.1 Row Analysis	148
		6.1.2 Column Analysis	153
	6.2	Resilient Modulus Analysis	157
	6.3	Marshall Stability and Flow Analysis	161
	6.4	Loaded Wheel Tracking Analysis	164
	6.5	Fatigue Analysis	170
	6.6	Summary	175
7	CO	NCLUSIONS AND RECOMMENDATIONS	178
	7.1	Conclusions	178
	7.2	Recommendations	180
RE	FERE	NCES	182
AP	PEND	ICES	189
BIC	DDAT	A OF THE AUTHOR	221

LIST OF TABLES

Tab	Table	
2.1	Development Allocation for Public Utilities and Infrastructure 2001-2005	10
2.2	Marshall Mix Design Criteria	20
2.3	Number of Gyrations for $N_{\text{initial}},N_{\text{design}}$ and N_{max}	25
2.4	Summary of Test Results for Laboratory and Field Compacted Specimens	36
2.5	Laboratory versus Field Conditions	39
2.6	Typical Aggregates Gradation for SMA and Conventional Mixtures (HMA)	49
2.7	Stone Mastic Asphalt Requirements	49
2.8	Effect of Compaction on Hot Mix Asphalt Pavements	51
2.9	Comparison of Various Fatigue Test Methods	60
3.1	Experimental Matrix for Correlation Study	68
3.2	Physical Property Tests for Aggregates	71
3.3	Characteristics of Palletized Cellulose Fiber (Viatop 80-20)	73
3.4	Indirect Tensile Stiffness Modulus Parameter	83
3.5	Target Level of Maximum Tensile Stress	89
4.1	Detail Specifications and Functions of Turamesin Components	92
4.2	Marshall Mix Design Analysis	97
4.3	Result for Correlation Study	103
4.4	Comparison of Different Types of Compactor	106
5.1	Physical Properties of Aggregates	108
5.2	Physical Properties of Asphalt Binders	108

5.3	Aggregates Gradations	109
5.4	Marshall Mix Design Analysis for Grade 60/70 – Medium Gradation	111
5.5	Marshall Mix Design Analysis for Grade PG76 – Medium Gradation	112
5.6	Marshall Mix Design Analysis for Grade 80/100 – Medium Gradation	113
5.7	Summary for Marshall Mix Design Analysis	118
5.8	Summary for Amount of Materials Required for a Slab	120
5.9	Length Analysis	123
5.10	Width Analysis	127
5.11	Left-Side Thickness Analysis	129
5.12	Right-Side Thickness Analysis	130
5.13	Difference in Thickness between Left-Side and Right-Side	132
5.14	Minimum Slab Dimension after Trimming	137
6.1	Laboratory Test Plan	139
6.2	Bulk Density and Air Voids for Grade 60/70	142
6.3	Bulk Density and Air Voids for Grade PG76	143
6.4	Bulk Density and Air Voids for Grade 80/100	144
6.5	Summary for Bulk Density and Air Voids Analysis	145
6.6	Average Air Voids-Row Analysis	150
6.7	Average Air Voids-Column Analysis	154
6.8	Resilient Modulus Analysis – Grade 60/70	158
6.9	Resilient Modulus Analysis – Grade PG76	158
6.10	Resilient Modulus Analysis – Grade 80/100	159
6.11	Marshall Stability and Flow Analysis	163

6.12	Loaded Wheel Tracking Test Results	166
6.13	Test Results for SMA Used on High Category of Roads	170
6.14	Results for Fatigue Analysis	172
6.15	Summary for Fatigue Analysis	175
6.16	Summary for Performance Tests and Analysis of Tura Slab Core Specimens	177
D.1	Marshall Stability Correlation Ratio	201
E.1	Marshall Mix Design Analysis for Grade 60/70 – Lower Gradation	202
E.2	Marshall Mix Design Analysis for Grade 60/70 – Upper Gradation	203
E.3	Marshall Mix Design Analysis for Grade PG76 – Lower Gradation	204
E.4	Marshall Mix Design Analysis for Grade PG76 – Upper Gradation	205
E.5	Marshall Mix Design Analysis for Grade 80/100 – Lower Gradation	206
E.6	Marshall Mix Design Analysis for Grade 80/100 – Upper Gradation	207
G.1	Data for Temperature and Pressure during Compaction	216
H.1	Critical Values of the t-Distribution	217

LIST OF FIGURES

Figu	re	Page
1.1	Increase of SMA Application in Bavaria, Germany	5
2.1	California Kneading Compactor	18
2.2	California Kneading Compactor Head	19
2.3	Marshall Impact Compactor	22
2.4	Air Voids Distribution in a Superpave Gyratory Compactor Specimen	26
2.5	Superpave Gyratory Compactor	26
2.6	Comparative Studies of Relative Stiffness of Several Laboratory Compactions Due to Field Compaction	28
2.7	European Standard Roller Compactor	28
2.8	Linear Kneading Compactor	30
2.9	Roller Inside Linear Kneading Compactor	31
2.10	French Plate Compactor	32
2.11	Marshall Stability for Specimens Compacted by Different Compaction Methods	36
2.12	Air Voids of Specimens Compacted by Different Compaction Methods	37
2.13	Bulk Density of Specimens Compacted by Different Compaction Methods	37
2.14	Modulus of Resilience for Specimens Compacted by Different Compaction Methods	37
2.15	Screed	40
2.16	Steel Wheel Roller	41
2.17	Pneumatic Tire Roller	41

xvii

2.18	Concept of Asphalt Multi-Integrated Roller (AMIR)	44
2.19	Hot Iron Process Asphalt Compaction (HIPAC)	45
2.20	Turamesin	47
2.21	Indirect Tension Test for Resilient Modulus	54
2.22	Variation of Resilient Modulus with Temperatures	55
2.23	Asphalt Pavement Analyzer (APA)	56
2.24	Hamburg Wheel-Tracking Device	57
2.25	French Rutting Tester (LCPC)	57
2.26	Dry Wheel Tracking (Wessex)m	57
2.27	Rutting	58
3.1	Flow Chart of Study 1: Criteria Establishment and Performance Analysis of Turamesin	63
3.2	Flow Chart of Study 2: Consistency Analysis of Stone Mastic Asphalt (SMA) Slabs	64
3.3	Flow Chart of Study 3:Performance Tests and Analysis of Tura Slab Core Specimens	65
3.4	Marking of Slab	69
3.5	Test Procedures for Rice Method	77
3.6	Measurement of Slab	79
3.7	Sampling of Cylindrical Core Specimens from Tura SMA Slab	81
3.8	Indirect Tensile Stiffness Modulus Test	84
3.9	Marshall Stability and Flow Test	85
3.10	Loaded Wheel Tracking Test	87
3.11	Indirect Tensile Fatigue Test	90
4.1.	Plot for Determination of Optimum Asphalt Content	99

xviii

4.2.	Test Procedure for Correlation Study	100
4.3.	Bulk Density and Air Voids vs Number of Passes of Roller	102
5.1	Chart for Aggregates Gradations	110
5.2	Plot for Marshall Mix Design Analysis Grade 60/70 – Medium Gradation	115
5.3	Plot for Marshall Mix Design Analysis Grade PG76 – Medium Gradation	116
5.4	Plot for Marshall Mix Design Analysis Grade 80/100 – Medium Gradation	117
5.5	Slab Preparation and Compaction Procedures for Turamesin	119
5.6	Length Analysis for Grade 60/70	123
5.7	Length Analysis for Grade PG76	124
5.8	Length Analysis for Grade 80/100	124
5.9	Improperly Compacted Sections of Slab	126
5.10	Width Analysis for Grade 60/70	127
5.11	Width Analysis for Grade PG76	128
5.12	Width Analysis for Grade 80/100	128
5.13	Histogram of Difference in Thickness between Left-Side and Right-Side	131
5.14	MINITAB Statistical Analysis	134
5.15	Critical-Value Approach	134
6.1	ANOVA for Average Air Voids	146
6.2	Sampling Position of 100 mm Diameter Specimens	149
6.3	Average Air Voids across the Slab-Row Analysis	151
6.4	ANOVA for Average Air Voids-Row Analysis	153

6.5	Average Air Voids across the Slab-Column Analysis	155
6.6	ANOVA for Average Air Voids-Column Analysis	157
6.7	Plot for Resilient Modulus Analysis at Different Temperatures	160
6.8	Plot for Marshall Stability and Flow Analysis	164
6.9	Time Plot for Rutting Analysis-Grade 60/70	167
6.10	Time Plot for Rutting Analysis-Grade PG76	167
6.11	Time Plot for Rutting Analysis-Grade 80/100	168
6.12	Summary for Loaded Wheel Tracking Analysis	169
6.13	Plots for Fatigue Analysis	173
6.14	Example of Fatigue Failure Pattern	173
A.1	Plan View of Roller Compactor	189
A.2	Front View of Turamesin	189
A.3	Plan View of Turamesin	190
A.4	Side View of Turamesin	191
E.1	Plot for Marshall Mix Design Analysis Grade 60/70 – Lower Gradation	208
E.2	Plot for Marshall Mix Design Analysis Grade 60/70 – Upper Gradation	209
E.3	Plot for Marshall Mix Design Analysis Grade PG76 – Lower Gradation	210
E.4	Plot for Marshall Mix Design Analysis Grade PG76 – Upper Gradation	211
E.5	Plot for Marshall Mix Design Analysis Grade 80/100 – Lower Gradation	212
E.6	Plot for Marshall Mix Design Analysis Grade 80/100 – Upper Gradation	213

LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

AASHTO	American Association of State Highway and Transportation Officials
ACC	Asphalt Concrete Course
AMIR	Asphalt Multi-Integrated Roller
APA	Asphalt Pavement Analyzer
ASTM	American Society for Testing and Materials
BS	British Standard
COV	Coefficient of Variation
DNRL	Danish National Roads Laboratory
ESALs	Equivalent Single Axle Load
HIPAC	Hot Iron Process Asphalt Compaction
HMA	Hot Mix Asphalt
ITFT	Indirect Tensile Fatigue Test
ITSM	Indirect Tensile Stiffness Modulus
LCPC	Laboratoire Central des Ponts et Chaussees
LVDT	Linear Variable Differential Transducer
LWT	Loaded Wheel Tracking
MATTA	Material Testing Apparatus
NAPA	National Asphalt Pavement Association
OAC	Optimum Asphalt Content
PG	Performance Grade
SHRP	Strategic Highway Research Program
SMA	Stone Mastic Asphalt

- SSD Saturated Surface Dry TMD Theoretical Maximum Density TRB Transportation Research Board University of California Berkeley UCB UPM Universiti Putra Malaysia UTM Universal Testing Machine Voids Filled with Asphalt VFA Voids in Mineral Aggregates VMA Voids in Total Mix VTM Maximum Tensile Stress $\sigma_{x,max}$ Initial Tensile Strain \mathcal{E}_T
- R² Coefficient of Determination
- *s* Sample Standard Deviation
- \overline{x} Sample Average