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Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the 

requirement for the degree of Doctor of Philosophy 

 

DEVELOPMENT OF STRUT-AND-TIE MODEL FOR CARBON FIBRE REINFORCED 

POLYMER STRENGTHENED DEEP BEAMS 

 

By 

 

MOHAMMAD PANJEHPOUR 

 

March 2014 

 

Chairman: Abang Abdullah Abang Ali, Professor   

 

Faculty: Engineering 

 

Deep beams are commonly used in tall building, offshore structures and foundations. According 

to many codes and standards, strut-and-tie models (STM) are recommended as a rational 

approach to analyse discontinuity regions (D-regions) and consequently deep beams. Since the 

last decade, strengthening of reinforced concrete (RC) beams with carbon fibre reinforced 

polymer (CFRP) has become a topic of interest among researchers. However, STM is not able to 

predict shear strength of deep beams strengthened with CFRP sheet. There is a need for a 

rational model to predict the ultimate strength of CFRP strengthened deep beams is the 

significance of this research problem. 

 

This thesis elaborates on the STM recommended by ACI 318-11 and AASHTO LRFD using 

experimental results to point the way toward modifying a strut effectiveness factor in STM for 

CFRP strengthened RC deep beams. It addresses several ways to enhance our understanding of 

strut performance in the STM. The purpose of this research is to modify the STM for prediction 

of shear strength of RC deep beams strengthened with CFRP. Hence, the main objective of this 

research is to propose an empirical relationship to predict the strut effectiveness factor in STM 

for CFRP strengthened RC deep beams. Besides, the issue of energy absorption of CFRP 

strengthened RC deep beams is also discussed in this research. Twelve RC deep beams 

comprising six ordinary deep beams and six CFRP strengthened deep beams with shear span to 

the effective depth ratio of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 were tested till failure in a four-

point bending set up. The values of principal tensile strain perpendicular to strut centreline were 

measured using demountable mechanical strain gauge (DEMEC).  

 

Finally, a modified STM using an empirical relationship was proposed to predict the ultimate 

shear strength of CFRP strengthened RC deep beams. The modification of STM was made by 

proposing an empirical equation to predict the strut effectiveness factor in STM for CFRP 

strengthened RC deep beams. According to the experimental results the growth of energy 

absorption of CFRP strengthened RC deep beams varies from approximately 45% to 80% for 

shear span to effective depth ratio of 0.75 to 2.00 respectively. This research is confined to RC 

deep beams strengthened with one layer of CFRP sheet installed using two-side wet lay-up 

system. 
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PEMBANGUNAN MODEL STRUT-AND-TIE BAGI POLIMER DIPERKUKUH 

GENTIAN KARBON DIPERKUKUHKAN RASUK DALAM 

Oleh 

 

MOHAMMAD PANJEHPOUR 

 

March 2014 

 

 

Pengerusi: Professor Abang Abdullah Abang Ali, Professor 

 

Fakulti: Kejuruteraan 

 

Rasuk dalam (Deep beams) biasanya digunakan dalam bangunan tinggi, struktur luar pesisir, dan 

yayasan. Menurut kod dan ukuran standard Strut-and-Tie Models (STM) disyorkan sebagai 

pendekatan rasional untuk menganalisis wilayah-D dan rasuk dalam (Deep beam). Sejak sedekad 

yang lalu, pengukuhan konkrit bertetulang (Reinforced Concrete, RC) dengan karbon bertetulang 

gentian polimer  (Carbon Fibre Reinforced Polymer, CFRP) telah menjadi topik yang hangat di 

kalangan para penyelidik. Walau bagaimanapun, STM tidak dapat meramalkan kekuatan ricih 

rasuk yang diperkukuhkan dengan kepingan CFRP. Keperluan model rasional untuk meramalkan 

kekuatan muktamad rasuk dalam yang diperkuatkan dengan CFRP adalah isu kepentingan dalam 

kajian ini.  

 

Tesis ini menguraikan tentang STM yang disyorkan oleh ACI 318-11 dan AASHTO LRFD 

dengan menggunakan keputusan eksperimen untuk mengubah faktor keberkesanan topang dalam 

STM bagi rasuk dalam RC. Ia juga menunjukkan beberapa cara yang meningkatkan pemahaman 

kita tentang prestasi topang dalam STM. Tujuan kajian ini adalah untuk menambahbaik STM dari 

segi ramalan kekuatan ricih rasuk dalam RC yang diperkuatkan dengan CFRP. Oleh itu, objektif 

utama kajian ini adalah untuk mencadangkan satu hubungan empirikal untuk meramalkan faktor 

keberkesanan topang dalam STM bagi CFRP yang diperkukuhkan rasuk dalam RC. Selain itu, 

kajian ini juga meneliti isu penyerapan tenaga dalam rasuk RC yang diperkukuhkan oleh CFRP. 

Dua belas rasuk dalam RC yang terdiri daripada enam rasuk dalam biasa dan enam rasuk yang 

diperkuat dengan CRFP bersama dengan bentang geser kepada nisbah kedalaman berkesan 0,75, 

1,00, 1,25, 1,50, 1,75, dan 2,00 diuji sehingga kegagalan dalam empat titik lentur mengatur. 

Nilai-nilai tekanan bersama dan berserenjang dengan tengah topang diukur dengan menggunakan 

tolok tekanan mekanikal. 

 

Akhirnya, STM diubahsuai yang menggunakan perhubungan empirikal yang mencadangkan 

untuk meramalkan kekuatan ricih yang muktamad daripada CFRP diperkukuhkan RC 

gelombang-gelombang yang mendalam. Pengubahsuaian STM telah dibuat oleh mencadangkan 

persamaan yang empirikal untuk meramalkan faktor keberkesanan pemasangan di STM untuk 

CFRP diperkukuhkan RC gelombang-gelombang yang mendalam. Menurut keputusan 
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eksperimen, penambahan penyerapan tenaga rasuk dalam RC yang diperkukuhkan dengan CFRP 

didapati berbeza kira-kira 45% kepada 80% untuk jangka ricih kepada nisbah kedalaman 

berkesan 0,75 hingga 2,00 masing-masing. Kajian ini adalah terhad kepada rasuk dalam RC yang 

diperkukuhkan dengan satu lapisan lembaran CFRP dengan sistem lay-up dua sampingan basah. 
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a Shear span of deep beams (mm) 

CFRP Carbon fibre reinforced polymer 

d Effective depth of deep beam (mm) 

E Young modulus of CFRP sheet (MPa) 

1cf  Principal tensile strain in concrete strut for ordinary deep beams (mm/mm) 

crf  Tensile stress of concrete from tensile split test (MPa) 


cf  Specified concrete compressive strength (MPa) 

cuf  Effective compressive strength of concrete strut from AASHTO LRFD (MPa) 

IR Increase ratio, ultimate shear strength of CFRP strengthened deep beam to 

ordinary deep beam  

I Increase ratio, used in recommended equation for ACI 318-11 

Pu-ordinary-test   Ultimate shear strength of ordinary deep beam from the test (kN) 

Pu-FRP-test Ultimate shear strength of CFRP strengthened deep beam from the test (kN) 

Pu-FRP-recommended Ultimate shear strength of CFRP strengthened deep beam from the proposed 

method (kN) 

R Modification ratio, ratio of 
1 FRP test  to 

1FRP  

t Thickness of CFRP sheet (mm) 

  Angle between adjoining tie and strut (rad) 

  Strut effectiveness factor 

  Average bond strength of concrete-CFRP (MPa) 

 ,   Reduction factors 

1  Principal tensile strain in concrete strut for ordinary deep beams (mm/mm) 

s  Tensile strain in an adjoining tie (mm/mm) 

1 ordinary AASHTO  Principal tensile strain of ordinary concrete strut using equation recommended 

by AASHTO LRFD (mm/mm) 

1 FRP test  Principal tensile strain in CFRP strengthened concrete strut resulted from the 

test (mm/mm) 

1 FRP recommended  Principal tensile strain of CFRP strengthened concrete strut revised using 

empirical relationship (mm/mm) 

1FRP  Principal tensile strain in CFRP strengthened concrete strut using equation 

recommended in this research before the revision with empirical relationship 

(mm/mm) 
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INTRODUCTION 

 

 

1.1 Introduction 

 

Deep beams are commonly used in tall buildings, offshore structures, and 

foundations (Kong, 1990). They mainly occur as transfer girders with single or 

continuous spans (Wight & Macgregor, 2009). According to ACI 318-11, deep 

beams have clear spans equal to or less than four times the overall depth. The 

regions with concentrated loads within twice the member depth from the face of the 

support are also taken as deep beams into account (ACI, 2011). The experimental 

results have shown that the addition of web reinforcement beyond the minimum 

amount is not capable to increase the shear strength of reinforced concrete deep 

beam owing to the softening behaviour of concrete because it provides only a 

marginal increase of strength (Islam, Mansur, & Maalej, 2005). Therefore, the 

application of external reinforcement is necessary to restrain crack widening in 

shear span of deep beam in order to enhance the shear strength of RC deep beams.  

 

Since last decade, strengthening of concrete structures with carbon fibre reinforced 

polymer (CFRP) has become a topic of interest among researchers, for its 

advantages of being lightweight and corrosion resistant. Furthermore, its ease of 

installation and high tensile strength made CFRP a useful tool in strengthening of 

concrete structures. Numerous studies have attempted to propose a proper model 

for bonding strength between CFRP and reinforced concrete strengthened in 

flexure (Lorenzis, B. Miller, & A. Nanni, 2001; X. Z. Lu, Teng, Ye, & Jiang, 2005; 

Ozden & Akpinar, 2007; Sayed-Ahmed, Bakay, & Shrive, 2009; Wu, Zhou, Yang, 

& Chen, 2010). Miller et al had recommended a simple equation to predict shear 

bond strength of CFRP to concrete surface which is used in the calculations 

throughout this research (Lorenzis, et al., 2001). This empirical equation is related 

to the shear approach based on the bond between concrete beams surface and 

CFRP. This equation will be discussed in the next chapter in details. 

 

The strut-and-tie model (STM) has been incorporated into the codes and standards 

because of its consistency and rationality since last decade. However, it has 

encountered few challenges during its implementation. The effective compressive 

strength of strut has been a complex issue among researchers since the emergence 

of STM. STM is a unified and rational approach which embodies a complicated 

structural member with a proper simplified truss model. It is commonly utilised to 

analyse the behaviour of discontinuity regions (D-region) for structural members. It 

should be noted that B-Regions are portions of a structural element in which 

Bernoulli's principle of straight-line strain is used. D-Regions are portions of a 

structural element with complicated variation in strain. 
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Looking from another vantage point, STM is a model for a portion of structural 

member which represents a force system including balanced set of loads. In 1899, 

the original truss model concept was initially recommended by Ritter to analyse the 

shear problems (Morsch, 1902; Ritter, 1899). It was then developed for tension 

problems by Rausch in 1929 (Rausch, 1929). Later, the research on the STM was 

continued and several modified STM were recommended by researchers. In 2002, 

STM was recommended by ACI code rather than the simple equation which was 

used to predict the shear strength of reinforced concrete deep beams in previous 

versions of ACI code. Since last decade, there has been an increasingly growing 

body of literature published on STM (Bakir & Boduroǧlu, 2005; He & Liu, 2010; 

Kwak & Noh, 2006; Lopes & do Carmo, 2006; Matteo, 2009; Ong, Hao, & 

Paramasivam, 2006; Perera & Vique, 2009; Tjhin & Kuchma, 2007; Wang & 

Meng, 2008; N. Zhang & Tan, 2007a). Recent developments for design of deep 

concrete members such as pile cap and deep beam have heightened the need for 

using STM. Accordingly, many standards and codes have specified the STM for 

design and analysis of D-regions for structure members (AASHTO, 2012; ACI, 

2011; Bahen, 2007; CAN/CSA-S6-06, 2006; CEB-FIP, 1999; CSA-A23.3-04, 

2005; DIN, 2001; Eurocode2, 2008; NZS, 2006). 

 

Strut as an important part of STM is a region in which compressive stresses act 

parallel together from face to face of two nodes in the structural member. It is 

commonly idealised into three shapes of prismatic, bottle-shaped, and fan-shaped 

(AASHTO, 2012; ACI, 2011; Bahen, 2007; CEB-FIP, 1999; CSA-A23.3-04, 2005; 

DIN, 2001; Eurocode2, 2008; NZS, 2006). According to the prior research, there is 

not unique strut dimension for one given concrete structural member. The rough 

estimate of strut dimensions is still an issue among researchers which has caused 

some challenges for the prediction of concrete strut behaviour in STM. The 

crushing strength of concrete in case of strut is evaluated by strut effectiveness 

factor. The available codes and standards which recommended strut effectiveness 

factor are classified into two groups in this thesis. The former group comprises 

AASHTO LRFD, CSA-S6-06, and CSA A23.3 which define the strut effectiveness 

factor as a function of the tensile strain of tie and the angle between the strut and 

the tie (AASHTO, 2012; CAN/CSA-S6-06, 2006; CSA-A23.3-04, 2005). The 

original idea of the forgoing effectiveness factor was proposed in 1986 by Vecchio 

and Collins (Vecchio & Collins, 1986). The latter group comprises ACI 318-11, 

DIN 1045-1, NZS 3101, and CEB-FIP Model code 1999 which recommend a 

simple value as the strut effectiveness factor unlike the former group. This value 

depends on the type of concrete based on the weight as well as the satisfaction of 

required reinforcements (ACI, 2011; CEB-FIP, 1999; DIN, 2001; NZS, 2006). The 

equations of strut effectiveness factor recommended by the former group are 

basically referred to the research conducted on modified compression-field (MCF) 

theory (J.vecchio & P.Collins, 1986). This research proposed the stress-strain 

relationship for cracked concrete in compression. 
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1.2 Problem Statement 

 

The strengthening of concrete structural elements using CFRP sheet is on the 

increase because of CFRP advantages which have been mentioned in the preceding 

section. The need for CFRP strengthening of concrete structural elements including 

B-regions and D-regions has been on the increase since the last decade. Crucially, 

the cost of CFRP will be competitive with steel for strengthening because of its 

mass production within the next five years (Ahmad, 2012). D-Regions are parts of 

the structure with complicated variation in strain. In essence, D-Regions contain the 

parts of structure which are near to the concentrated forces or steep changes in 

geometry which are so-called geometrical discontinuities or static discontinuities. 

Strut-and-tie model (STM) is very convenient for analysis of D-regions. According 

to the literature review, the main challenge in STM is the calculation of the value of 

the strut effectiveness factor for design purposes. However, strengthening of D-

regions using CFRP exacerbates the forgoing issue.  

 

By and large, the problem is that the STM is not able to predict shear strength of 

RC deep beams strengthened with CFRP sheet. The need for a rational method to 

predict the ultimate strength of CFRP strengthened D-regions particularly in RC 

deep beams is the significance of this research problem. This thesis aims to modify 

the STM for analysis of CFRP strengthened RC deep beams with various shear  to 

the effective depth ratios. It also discusses the issue of ductility and energy 

absorption of ordinary and CFRP strengthened RC deep beams.  

 

1.3 Research Aims and Objectives 

 

This thesis elaborates on the STM recommended by ACI318-11 and AASHTO 

LRFD using experimental results to point the way towards modifying strut 

effectiveness factor in STM for CFRP strengthened RC deep beams. It addresses 

several ways to enhance our understanding of strut performance in the STM. The 

main purpose of this research is to modify the STM for prediction of ultimate shear 

strength of RC deep beams strengthened with CFRP. To date, no research has been 

conducted about the value of strain along and perpendicular to the strut centreline 

in D-region to achieve the strut effectiveness factor in STM. Hence, the objectives 

of this research are as follows:  

 

 To propose modified STM using an empirical relationship to predict the 

ultimate shear strength of CFRP strengthened RC deep beams.  

 

i. To obtain an empirical relationship to predict the value of 

principal tensile strain in strut for CFRP strengthened deep 

beams. 
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ii. To establish an empirical relationship between the growths of 

energy absorption of CFRP strengthened RC deep beams and 

shear span to effective depth ratio. 

 

 

iii. To identify the failure mode of ordinary and CFRP strengthened 

deep beams as well as the maximum crack width of deep beams 

with different shear span to the effective depth ratios. 

 

1.4 Scope and Limitations 

 

This research is confined to the ordinary concrete deep beams strengthened with 

one layer of unidirectional CFRP sheet with two-side wet lay-up system. The 

experimental concrete deep beams constructed in this experiment consist of two 

groups according to control deep beams and CFRP strengthened deep beams. Each 

group consisted of six deep beams with shear span to the effective depth ratio of 

0.75, 1.00, 1.25, 1.50, 1.75, and 2.00.  

 

The beams were cast using a single batch of ready mixed concrete. The cylindrical 

compressive strength and cylinder splitting tensile strength of concrete were 37.02 

MPa and 3.31 MPa respectively. The beams were tested to failure under four-point 

bending set-up. The CAST (computer aided strut-and-tie) design tool were utilised 

to facilitate the iterative calculation method for STM and draw the three parts of 

STM with different amounts of stress in colour (D. A. Kuchma & T. N. Tjhin, 

2001). Ultimate shear strength of control deep beams and CFRP strengthened deep 

beams, shear span to effective depth ratio, the value of principal strain 

perpendicular to the strut centreline and the energy absorption of deep beams were 

the main factors in this research. 

 

1.5 Layout of Thesis 

 

This research consists of five chapters. These chapters were formatted according to 

the Style 1 of the Guide to Thesis Preparation-March 2014, provided by the School 

of Graduate Studies, University of Putra Malaysia. Chapter 1 comprises the concise 

literature review, problem statement, objectives and scope of current study. Chapter 

2 explores the background research regarding deep beam, carbon fibre reinforced 

polymer (CFRP), and the strut-and-tie model (STM). Chapter 3 presents the 

methodology of this research comprising application of CAST design tool 

(Kuchma & Tjhin, 2005) as well as material and method used in this experimental 

work. Chapter 4 provides the results of this research and related discussion. Finally, 

in chapter 5, the conclusion of this research is drawn and subsequently the 

recommendations for further research are presented.  
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