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Electromyography (EMG) is a technique to acquire and study the signal of skeletal 

muscles. Skeletal muscles are attached to the bone responsible for the movements of 

the human body. Regarding the vast variety of EMG signal applications such as 

rehabilitation of people suffering from some mobility limitations, scientists have 

done much research on the EMG Control System (ECS).  Accordingly, using EMG 

signal for controlling a prosthetic hand has been developed remarkably in recent 

years. The ECS based on pattern recognition has been improved by using new 

techniques in the EMG signal processing. Some of the main concerns of the ECS are 

the accuracy and complexity of the system. Consequently, the development of the 

ECS in term of accuracy and speed is the main challenge in prosthetic control. 

This thesis investigates the necessity of the ECS improvements by processing the 

EMG signal through a pattern recognition-based control system for prosthesis 

application. To reach this goal, different techniques in two domains of study, time 

and time-frequency, had been utilized to find the optimum features for EMG 

analysis. Mean Absolute Value (MAV), Root Mean Square (RMS), Zero Crossing 

(ZC) and Waveform Length (WL) were employed as feature extraction techniques in 

time domain and Wavelet Transform (WT) was used in time-frequency domain. 

Furthermore, an optimization in wavelet analysis had been investigated using twenty 

mother wavelets which improved the results of the EMG feature extraction. 

Afterwards, two discriminant analysis classifiers, Linear Discriminant Analysis 

(LDA) and Quadratic Discriminant Analysis (QDA) had been utilized to differentiate 

the five hand movements. It is worth mentioning that eighteen healthy people had 

participated in EMG signal recording and different wrist motions (flexion, extension, 

abduction, adduction and rest) had been recorded.  

As a result, the output of the proposed algorithm for EMG signal processing using 

various techniques presented an improvements in EMG signal classification in terms 

of accuracy. The highest classification accuracy obtained in this research was 

obtained by RMS feature in time domain as 98.06%.  Also, the optimizing of 

wavelet features yielded 97.13% accuracy by applying WT+RMS (Root Mean 

Square of Wavelet coefficients) as the feature. On the other hand, an investigation on 

data segmentation before feature extraction had revealed the segment size of EMG 
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signal plays a significant role in EMG analysis. In this study, it was presented that 

the techniques of segmentation and segment size affect the classification accuracy. 

Based on the results of this thesis, the proposed algorithm for EMG signal processing 

can be applied to discriminate different hand grip postures efficiently. Overall, RMS 

feature was demonstrated as the optimum feature for EMG classification using QDA 

classifier.  
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Pengerusi: Siti Anom Ahmad, PhD 

Fakulti: Kejuruteraan 

Elektromiografi (EMG) juga dirujuk sebagai mioelektrik, adalah isyarat

bioperubatan yang diambil dari rangka otot. Rangka otot yang bersambung kepada

tulang bertanggungjawab untuk pergerakan badan. Oleh kerana penggunaan isyarat 

EMG sangat luas dan pelbagai sebagai contoh pemulihan pesakit yang menderita

daripada pergerakan yang terhad, maka saintis telah membuat banyak kajian

berkaitan sistem kawalan EMG (ECS). Disebabkan itu, beberapa tahun 

kebelakangan ini penggunaan isyarat EMG untuk mengawal tangan palsu telah

dibangunkan. ECS berasaskan pengenalpastian bentuk atau paten telah 

dipertingkatkan dengan menggunakan teknik baru dalam analisis isyarat EMG.

Terdapat beberapa perkara berbangkit dalam ECS seperti ketepatan dan kesukaran

sistem tersebut. Disebabkan itu, pembangunan ECS dalam kata erti ketepatan dan 

kelajuan adalah cabaran utama dalam pengawalan tangan palsu.

Tesis ini bertujuan untuk menyiasat keperluan untuk meningkatkan ECS dengan

memproses isyarat EMG melalui pengenalpastian paten berasakan sistem kawalan

untuk aplikasi prostesis. Untuk mencapai objektif tersebut, teknik berbeza dalam dua

domain kajian iaitu masa dan masa-frekuensi telah dikaji bagi mendapatan sifat 

optimum dalam analisis EMG. Mean Absolute Value (MAV), Root Mean Square

(RMS), Zero Crossing (ZC) dan Waveform Length (WL) telah digunakan sebagai 

teknik pengektrakan ciri atau sifat dalam domain masa dan ‘Wavelet Transform’

(WT) dalam domain masa-frekuensi. Tambahan lagi, pengoptimuman dalam analisis

wavelet telah dikenalpasti menggunakan dua puluh ibu wavelet yang mana ia

menambahbaik keputusan pengekstrakan ciri EMG. Kemudian, dua pengelas

pembezaan analisis, LDA and QDA telah direkrut untuk membezakan lima 

pergerakan tangan. Seramai lapan belas orang terlibat dalam rakaman isyarat EMG

dengan pergerakan pergelangan tangan yang berbeza (membengkok,

meregang,membengkok ke kanan, membengkok ke kiri, rehat ) telah direkodkan.

Hasil dari kajian ini, terdapat peningkatan ketepatan pengkelasan isyarat EMG 

didalam ECS menggunakan pelbagai teknik yang diusulkan. Ketepatan pengkelas 

tertinggi yang didapati dari sistem ini telah dicapai melalui ciri RMS dalam domain 

masa sebanyak 98.06%. Pengoptimuman ciri wavelet mendapat 97.13% ketepatan 

dengan menggunakan WT+RMS sebagai ciri. Selain dari itu, satu kajian ke atas 

pembahagian data sebelum pengekstrakan ciri mendapati saiz pembahagian isyarat 
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EMG memainkan peranan penting dalam analisis EMG. Dalam kajian ini, ia 

membuktikan bahawa teknik pembahagian dan saiz bahagian mempengaruhi 

ketepatan pengkelasan dan kelajuan sistem. Berdasarkan keputusan dari kajian ini, 

algoritma yang dicadangkan untuk memproses isyarat EMG boleh diaplikasi untuk 

membezakan postur genggaman tangan dengan cekap. Keseluruhannya, sifat RMS 

yang telah terbukti sebagai sifat optimum dalam pengkelasan EMG menggunakan 

pengkelas QDA. 
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CHAPTER     1  

INTRODUCTION 

1.1 Background 

Nowadays, limb loss issue has fascinated researchers remarkably and the approach 

of prosthesis development has been considered in many countries. There are 1.7 

million people with limb loss in the United States while it is predicted that this value 

will double by the year 2050 (Ziegler-Graham, MacKenzie, Ephraim, Travison, & 

Brookmeyer, 2008). Prosthetic hands have been designed as a replacement for upper 

limb amputees. Although the number of lower limb amputations is more than the 

upper limb amputations, the damage produced by upper limb loss is considerably 

more harmful (Baumgartner, 2001) because the proficiency of hand in 

accomplishing various activities in daily life is noticeable. Consequently, an 

appropriate designed of upper limb prosthetic device can improve the amputee’s life 

physically and psychologically. There are two kinds of prosthetic hands, namely, 

passive prosthesis and active prosthesis. The passive form is a cosmetic type with 

excellent appearance provides a visual replacement of the amputation while the 

active prosthesis (also called a functional prosthesis) is used to imitate a natural hand 

to manipulate objects but its appearance is not attractive.  

Electromyography (EMG) signal has been applied efficiently to control active 

prosthesis. One of the most significant advantages of EMG control is its property of 

hands-free control (Asghari Oskoei & Hu, 2007). The first clinically EMG prosthesis 

was presented by Russian expert in the 1960s  (Plettenburg, 2006). In more than last 

50 years, the EMG control system has been much improved. Overall, we can 

categorize all these improvements and achievements in three generations. First 

generation presents ON/OFF control system that uses a single rate of actuation. 

Second one comprises a state machine, large-scale threshold manipulation, signal 

amplification, the adjustment of the muscle contraction rate, and proportional 

control. Third generation includes programmable microprocessors allows an infinite 

range of adjustment of EMG characteristics (Asghari Oskoei & Hu, 2007).  

On the other hand, applying microprocessor in the control system of EMG yields 

some proficiency such as using advanced signal processing techniques. In this way, 

it is probable to filter EMG signal by powerful techniques. Moreover, the robustness 

of EMG control system (ECS) can be improved by using pattern recognition control 

systems (Asghari Oskoei & Hu, 2007). In this Thesis, an improvement of EMG 

signal processing in the ECS based pattern recognition is investigated. ECS can be 

categorized into two groups:  pattern recognition base control system and non-

pattern recognition- based control system (B Hudgins, Parker, & Scott, 1994). 

Considering the various applications of ECS such as multifunction prosthesis (Kevin 

Englehart, Hudgin, & Parker, 2001; Kevin Englehart & Hudgins, 2003) wheelchairs 

(Han, Zenn Bien, Kim, Lee, & Kim, 2003), virtual keyboards and clinical 

application, the improvements of ECS shall provide outstanding services. 
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1.2 Related Work 

Several techniques have been used to develop pattern recognition based ECS in 

recent years. Generally, EMG pattern recognition systems contain three major 

components, namely, preprocessing, feature extraction and classification. EMG 

feature extraction plays a critical role in improving the control system. Features 

characterize the raw EMG signal for classification, so even the strongest classifiers 

cannot perform well if they are not supported with good features. EMG features are 

categorized in three domains: time domain, frequency domain and time-frequency 

domain (Zecca, Micera, Carrozza, & Dario, 2002). A wide ranges of features (thirty 

seven features) in time and frequency domains had been presented and their 

properties on EMG signal processing had been studied in a research recently 

(Angkoon Phinyomark, Phukpattaranont, & Limsakul, 2012). Also, various time 

domain features were used to classify EMG signal by a support vector machine 

classifier (Oskoei & Hu, 2008). The most popular techniques in the EMG feature 

extraction are time domain features because of their computational simplicity 

(Asghari Oskoei & Hu, 2007). Mean Absolute Value (MAV) and Root Mean Square 

(RMS) are two famous time domain features (Clancy, Morin, & Merletti, 2002). 

Frequency domain features are generally applied to study muscle fatigue and Power 

Spectral Density (PSD) has been a main analysis in frequency domain (Asghari 

Oskoei & Hu, 2007). 

Likewise, there are different techniques in time-frequency (also named time-scale) 

domain. The accuracy of some time-scale methods had been compared and it was 

concluded that continuous wavelet transform performed better than the other time-

frequency analysis techniques (Karlsson, Yu, & Akay, 2000b). In another study 

different levels of wavelet functions were applied to find the best feature. Therefore, 

unwanted parts of the EMG signal were eliminated by selecting the suitable wavelet 

function (A. Phinyomark, Limsakul, & Phukpattaranont, 2011) 

After feature extraction, features required to be classified into discriminant classes of 

hand movements. Some old and new techniques have been recruited as classifiers in 

EMG classification such as, Linear Discriminant Analysis (LDA), (Kevin Englehart, 

et al., 2001; Farrell & Weir, 2007; A Phinyomark, Hu, Phukpattaranont, & Limsakul, 

2012; Zhang, 2013), Support Vector Machine (Kamavuako, et al., 2013; Oskoei & 

Hu, 2008; Shenoy, Miller, Crawford, & Rao, 2008), neural network (K. Englehart, 

Hudgins, Parker, & Stevenson, 1999; Kamavuako, et al., 2013), fuzzy logic (Ahmad 

& Chappell, 2008; Ajiboye & Weir, 2005; Park & Lee, 1998), and Neuro-fuzzy 

system (Chan, Yang, Lam, Zhang, & Parker, 2000; Karlik, Osman Tokhi, & Alci, 

2003). Classifiers should be fast enough to recognize different muscle contraction 

patterns to actuate the prosthetic device in proper response time. Therefore, 

sometimes preprocessing and post-processing techniques may be required to speed 

up the control system too (Oskoei & Hu, 2008). 

1.3 Problem Statement 

EMG signal is a common input to control upper limb prostheses. Several research 

teams have recently tried to find the signal features with the best performance for 

optimizing the control system of the prosthesis (Asghari Oskoei & Hu, 2007; 

Angkoon Phinyomark, et al., 2012). To increase the accuracy of the EMG signal 
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analysis in the first stage, it is essentially required to preprocess the signal before 

feature extraction. Normally, huge amount of data is produced after preprocessing 

which is a limitation of the ECS. As the processing of these data may cause time 

delay, recruiting efficient methods can compensate the delay and increase the 

accuracy simultaneously.  In the aspect of the controbility in ECS, the accuracy of 

the system plays an important role. Accordingly, choosing proper techniques in 

feature extraction can improve the performance of the classifier in terms of accuracy. 

In this way, the characteristics of EMG pattern are distinguished remarkably in less 

classification error. Overall, the aim of this study is to improve the ECS through 

investigating various techniques in EMG signal processing to discriminate different 

hand postures. In this viewpoint, improving the classification accuracy has been 

regarded considerably. 

1.4 Aims and Objectives 

The aim of this thesis is to improve EMG signal processing through the ECS based 

on pattern recognition for prosthesis application. To achieve this goal, specific 

objectives are as follows:  

 To study and analyse the EMG preprocessing technique based on data 

segmentation, time domain features and discriminant analysis classifiers. 

 To investigate and compare the behaviour of some time and time-

frequency techniques in the EMG feature extraction. 

 To optimize the performance of the time-frequency features (wavelet 

coefficients). 

 To increase the accuracy of EMG classification by finding proper feature 

and classifier. 

1.5 Scopes of Work 

As mentioned in the last sections, ECS is categorized into two types, pattern 

recognition control system and non-pattern recognition system. Figure 1.1 

demonstrates the EMG control system based on pattern recognition.  

As can be seen in the Figure 1.1, the data are collected by electrodes in the beginning 

and then signals are filtered. In the next stage, a controller process the EMG signal 

which includes four components, data segmentation, feature extraction, classification 

and digital controller. In this thesis, the analysis of EMG pattern recognition system 

has been investigated focusing on three modules of this system; data segmentation, 

feature extraction and classification. In data segmentation, the signal is preprocessed 

to be ready for feature extraction. This step helps to improve the accuracy and 

response time of the signal (Asghari Oskoei & Hu, 2007). Afterward, the pre-defined 

features are extracted for classification. The aim of this step is to find the most 

suitable features which can represent the characteristics of the EMG signal.  

Since the best classifier cannot achieve acceptable results if they are not fed with 

suitable features, feature extraction plays an important role in the ECS improvement. 

Hence, some different features are utilized in this study to analyse their performance 

and find the most efficient one. Ultimately, a classifier recognizes the signal patterns 

in the last step and classifies it into a specific class.  



© C
OPYRIG

HT UPM

4 

 

 

Figure 1.1. The EMG control system based on pattern recognition adopted from 

(Asghari Oskoei & Hu, 2007) 

1.6 Thesis Contribution 

The main contributions of this thesis in purpose of mentioned objectives are listed as 

follows: 

 To find the optimum segment size for EMG signal processing.  

 To calculate and extract EMG  time domain features, namely, MAV, 

RMS, ZC, WL and use  two classifiers to increase the  accuracy. 

 To calculate and extract EMG time-frequency domain features, (wavelet 

features) and optimize the wavelet analysis by finding the best mother 

wavelet and the depth of decomposition through applying 20 mother 

wavelets. 

 To reduce the dimension of wavelet features by utilizing statistical 

information, MAV and RMS, of the wavelet coefficients as WT+MAV 

and WT+RMS. 

1.7 Thesis Organization 

The structure of this study reflects the sequence of improving the EMG signal 

processing in the pattern recognition based on ECS. The organization of this thesis is 

as follows: 

Chapter 2 reviews some studies and publications on ECS for prosthesis application 

in the last years and highlights the significant achievements. Also, the theory of 

wavelet transform has been reviewed as one of the main technique of this research.  
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Chapter 3 introduces the methodology of this thesis and study the theories of 

different techniques applied in the proposed ECS. It is worth mentioning that in this 

chapter, the wavelet transform has been considered as a powerful technique for EMG 

analysis and multi-features are created from wavelet coefficients. Furthermore, an 

optimization of wavelet analysis has been done by finding the best mother wavelet 

between four families and 20 members of these families as wavelet functions. 

Ultimately, two evaluation criteria for defining the depth of wavelet decomposition 

are introduced in this chapter. 

Chapter 4 describes the results of the proposed algorithm for EMG signal processing 

and analyses the achievements. The classification procedure of optimum features is 

evaluated in terms of accuracy and error and the performance of the various features 

are compared and discussed. In this chapter, the optimum features and classifier are 

revealed too. 

Chapter 5 draws the conclusions from the results and the noteworthy points in each 

stage of the proposed EMG signal processing algorithm. Lastly, an outline of future 

work is presented to improve the ECS in other approaches.  
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