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Plant recognition system is a system that recognizes the species of plants automatically. 

The applications of this system are in medicine, botanical research and agriculture. In the 

recent years, lack of sufficient botanist increases the need for computerized system. Also, 

it can be seen that working with these systems are more convenient and quick when 

dealing with huge data. The problem with the existing plant recognition system is the lack 

of method to find the best structure for their classifiers. This work presents some 

contributions to plant recognition system. Number of samples involving Flavia, Citrus 

and Coleus were collected. Then, suitable features including texture and shape were 

extracted from the dataset. Texture features involved the middle energy and the middle 

entropy and shape features involved statistical characterizations including variance, 

median, standard deviation and mean. Next, the classification was carried out. First, the 

best set of structures for feed forward neural network were found by multi objective 

parallel genetic algorithm. This approach regarded three criteria involving mean square 

error, Akaike information criterion and minimum description length to rate different feed 

forward neural network structures and to select the best set of them. Lastly, feed forward 

neural network with the best structures were applied to classify the dataset. This method 

resulted around 99% of classification rate. To conclude, multi objective parallel genetic 

algorithm can automatically tune feed forward neural network to classify the dataset with 

a good classification rate. 
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Fakulti: Kejuruteraan 

 

Sistem pengecaman tumbuhan adalah satu sistem yang mengecam spesies tumbuhan 

secara automatik. Aplikasi sistem ini adalah dalam bidang perubatan, penyelidikan botani 

dan pertanian. Sejak kebelakangan ini, kekurangan ahli botani meningkatkan keperluan 

sistem berkomputer. Selain itu, ia boleh dilihat bahawa bekerja dengan sistem ini adalah 

lebih mudah dan cepat apabila berurusan dengan data yang besar. Masalah dengan sistem 

pengiktirafan tumbuhan adalah kekurangan kaedah untuk mencari struktur yang terbaik 

untuk penjodoh bilangan mereka. Kerja ini membentangkan beberapa sumbangan untuk 

menanam sistem pengiktirafan. Bilangan sampel yang melibatkan Flavia, Citrus dan 

Coleus telah dikumpulkan. Kemudian, ciri-ciri yang sesuai termasuk tekstur dan bentuk 

ini diperolehi daripada dataset itu. Ciri-ciri tekstur yang terlibat tenaga pertengahan dan 

entropi pertengahan dan bentuk ciri-ciri yang terlibat pencirian statistik termasuk varians, 

sisihan piawai dan min. Seterusnya, pengelasan yang telah dilakukan. Pertama, set terbaik 

struktur untuk makanan rangkaian neural ke hadapan ditemui oleh objektif algoritma 

selari genetik berbilang. Pendekatan ini dianggap tiga kriteria yang melibatkan ralat min 

persegi, maklumat kriteria Akaike dan panjang deskriptif minimum untuk mengadar 

makanan ke hadapan struktur rangkaian neural yang berbeza dan untuk memilih set yang 

terbaik daripada mereka. Akhir sekali, makanan rangkaian neural ke hadapan dengan 

struktur yang terbaik telah digunakan untuk mengelaskan dataset itu. Kaedah ini 

menyebabkan sekitar 99 % daripada kadar pengelasan. Untuk menyimpulkan, objektif 

algoritma selari genetik berbilang boleh secara automatik lagu makanan rangkaian neural 

ke hadapan untuk mengklasifikasikan dataset dengan kadar pengelasan yang baik. 
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CHAPTER 1 

INTRODUCTION 

 

Plant Recognition System (PRS) is designed to assist botanists and, even, non-experts in 

identifying plants. Conventionally, botanists applied daunting techniques like vegetation 

key to identify right plant species. In this method, they needed to consider many 

characters such as shape, margin and venation in a plant leaf to correctly recognize a kind 

of plant. This method shows futile when dealing with the flora of a country or, even, a 

continent, which are mega-data [1]. Nowadays, intelligent systems are engaged to 

facilitate plant identification. Non-stop performance, portability and fastness of these 

systems caused replacement of them with the conventional methods [2]. Therefore, there 

is a demand to develop automated PRS to add more convenience and accuracy to it [3]. 

PRS is an intelligent system that benefits from machine learning and image processing 

techniques. Also, in some works, optimization methods have been used to improve the 

performance of PRS [4, 5]. The most prominent merit of this technique is convenient and 

fast implementation. Also, another benefit of this method is its automatic character. The 

main contribution of the optimization to PRS has been in the selection of the suitable 

features from feature vector to omit undesirable information [6, 7].  However, works (i.e., 

[8]), also, used this technique to optimize processes for training classifier. The focus of 

this thesis is on the improvement of the classification rate and automatic tuning of 

classifier by engagement of the optimization technique.  

  

Several attempts have been made to improve the PSR. Broadly speaking, PRS involves 

data collection, image processing and feature extraction and classification. Each part of 

the PRS carries the same share of importance, meaning that selection of suitable or 

unsuitable methods in each part can increase or decrease the system performance. 

Therefore, the system performance can be improved by contribution in different parts. 

Conventional PRS didn’t recruit optimization methods. SVM, neural network, linear 

discriminate analysis and back propagation neural networks are strong classifiers used in 

optimized PRS [2, 9, 10, 11]. In addition, classifiers like KNN, Probabilistic Neural 

Network (PNN), MMC and hyper sphere classification method has been applied to 

conventionally classification of plants [1, 5, 12]. However, some classifiers including 

statistical analysis, feature matching and combined classifier techniques showed weak 

performance [13, 14, 1, 15].  

 

Also, the recruitment of the optimization method in PRS has been received increasing 

attention, in the recent research. Most of these works focus on the optimization of the 

feature vectors that are exorbitant. Methods such as Ant Colony Optimization (ACO) and 

Kernel Principle Component Analysis (KPC), which were used with SVM, that are 

applied to feature subset selection showed prominent classification rate [7, 6].  However, 

the approaches such as OLSA, RLSA and GA were used to optimize classifiers training 

[8, 4]. Overall, methods that used optimized PRS showed better performance compared 

to the non-optimized PRS. Therefore, the optimization techniques should be a part of PRS 

for improvement of classification rate.  

 

1.1   Problem Statement         

In the lack of botanists, computer aided systems are the best choice in plant identification. 

It is frequently proved that even a botanist expert cannot perform his works without the 

assistance of computers, especially when they are dealing with the huge dataset [13]. This 

drawback brought an increasing need for automated plant identification systems. User-
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friendly, quick performance and reliability are the prominent benefits of this system. 

Existing PRS suffer from the choice of the best model for the classifiers.  Most of them 

applied rules of thumb or trial and error method to find the classifier structures and 

parameters. There is no evidence whether these techniques can really help with tuning 

the classifier. This measure, also, can assist improving the classification rate. To sum up, 

problems are listed below: 

  

1. Limitations of the existing PRS, such as lack of automatic classifier tuning and 

accuracy issue, bring the need for improving the current system. 

2. Handling and processing huge plant’s data in a country or, even, a continent 

necessitate developing fast and accurate PRS.  

3. Portability and flexibility of this system allow everyone to have a nonstop expert, 

which is not a case with botanist.  

 

From this point of view, improving the classification rate has been regarded 

considerably.   

 

1.2       Objectives    

Overall, the aim of this project is the development of the optimized PRS, through 

investigation of optimization of the classifier structure. To obtain this achievement, 

specific objectives are listed follow:  

 

1. To design an automated PRS 

2. To utilize Multi Objective Parallel Genetic Algorithm (MOPGA) to find the best set 

of structures for the Feed Forward Neural Network (FFNN) 

3. To improve the classification rate applying tuned FFNN 

 

1.3   Scopes of the Work 

In the past, botanists and non-experts used key vegetation to identify the plants. This 

technique was very time-consuming and daunting because they needed to find the similar 

plant images through a large handbook to identify a right specific plant.  Due to increasing 

automated and intelligent systems and the convenience they serve, people get more 

interested in using PRS. The core of this system is artificial intelligence and pattern 

recognition. In the PRS based on the plants’ leaves images, first, plants images were 

collected using image acquisition devices such as scanners and cameras. Therefore, 

adequate number of plants images including Flavia, Citrus and Coleus were collected. 

Then, data were characterized by image processing and feature extraction techniques to 

be prepared for the next part of classification. Shape and texture based were two features 

applied for data characterization. In addition, machine learning techniques were applied 

to model the processed data. Therefore, for the last step of PRS, FFNN, which was chosen 

for machine learning technique, was tuned by MOPGA and then applied for classification 

of extracted features.  

 

1.4  Thesis Layout     

The thesis structure represents the stages of the PRS development based on the 

optimization method. The layout of the thesis is as below: 

 

Chapter 2 reviews the recent growths in the PRS that employed machine learning and 

focuses on the conventional and optimized methods. Different methods such as Fast 
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Fourier Transform (FFT), geometrical wavelet for the feature extraction and Move 

Median Center (MMC) and FFNN for the classification and Orthogonal Least Square 

Algorithm (OLSA) and Genetic Algorithm (GA) optimization. 

Chapter 3 provides the information about the research methodology. Initially, image data 

collection and feature extractions are covered. The last section of this chapter gives some 

insights into the evolutionary optimization techniques to tune FFNN and classification of 

the obtained data.  

Chapter 4 analyses the method and the achievement of the research. Data collection, 

feature extraction, tuning the FFNN and classification results are shown. Then the results 

of the research are presented and discussed.  

Chapter 5 concludes from the research findings and highlights of the results explores of 

the open problems. In the last part includes some additional suggestions for improvement 

of the future research.  
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