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ABSTRACT

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Master of Science

CRASHWORTHINESS ANALYSIS OF ELLPTICAL AUTOMATIVE SIDE
DOOR BEAM FOR LIGHTWEIGHT DESIGN

By

EHSAN RASOOLIYAZDI

January 2014

Chairman: Assoc. Prof. Rizal.Bin.Zahari, PhD
Faculty: Engineering

Side door beam (SDB) is one of the most important components in a vehicle to
protect the passengers from the side impact. Side impact is the second type of
common accident after frontal impact. The limited physical space between the car
body and the occupants lead to severe injury due to high deformation of the car
body. The weight reduction and crashworthiness improvement of the SDB are two
problems that must be solved. In this study, the main objective is to optimize the
crashworthiness behavior of different SDBs under impact test. Reducing the weight
of SDB as well as the maximum impact load are two significant targets which are
investigated simultaneously. In this respect, the specific energy absorption (SEA)
and the peak load (PL) are two parameters which play the role key to develop the
aforementioned goals. To investigate the crashworthiness of an SDB, two cross-
sectional configurations of SDB which are elliptical and rectangular are selected.
Three material alloys of magnesium, aluminum and steel as a reference material are
assigned to the elliptical and rectangular SDB. In addition, these simulations are
conducted with three orientation angles which are 0,45 and 90 degree with respect to
the rigid wall impactor. For each case of studies, the elliptical and rectangular cross
section of the SDB under each orientation angle is taken into account by considering
two variables of geometrical parameters; thickness for both design beam and minor
to major radii ratio for elliptical and ratio of sizes for rectangular shape. All the
aforementioned steps are performed by LS-DYNA software which are used widely
for impact problems. The multi-objective optimization framework is used to find the
optimum geometrical characteristics in each series of simulations. Consequently, the
optimization process of the SDB is performed using response surface method (RSM)
in terms of the weight average method and the geometrical average method. The
series of results are presented in a Pareto Frontier graph to show a group of solutions
with optimal points and to meet both mentioned objectives at the same time. The
optimization steps are performed by MATLAB software. The results show
magnesium alloy has good ability to absorb more energy compare with the
aluminium and steel alloys. On the other hand, elliptical cross section cause to lower
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PL respect to rectangular design. Also, the orientation angle of 90 degrees lead to
decrease the PL compare with the 0 and 45 degree. Consequently, elliptical SDB
made by magnesium material with the angle of 90 degrees with respect to the rigid
wall became the best solution in order to achieve the highest energy absorption
(SEA) and the lowest peak load (PL). The selected SDB is optimized to get the
optimal design which shows it has 0.5mm thickness and the ratio of radii is 0.284.
The SEA and PL of optimized SDB are equal to 1203.74 (J/Kg) and 8.477 (KN)
respectively.
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ABSTRAK
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ANALISA KEBOLEH TAHANAN HENTAMAN RASUK PINTU SISI
ELIPTIC DENGAN REKAAN RINGAN

Oleh

EHSAN RASOOLIYAZDI

Januari 2014

Pengerusi: Assoc. Prof.Rizal Bin Zahari, PhD
Faculti: Kejuruteraan

SDB adalah salah satu komponen penting dalam kenderaan untuk melindungi
penumpang darpada kecedaraan sisi. Kesan sisi la merupakan kecedaraan jenis
kedua selepas kecedaraan hadapan. Ruang fizikal terhad antara badan kereta dan
penumpang menjurus kearah kecederaan parah disebabkan kecacatan tinggi badan
kereta. Pengurangan berat badan dan peningkatan crashworthiness SDB ialah dua
masalah yang mesti diselesaikan. Dalam kajian ini, objektif utama ialah untuk
mengoptimumkan tingkah lack crashworthiness SDBs berbeza di bawah ujian
hentaman. Mengurangkan berat SDB serta beban kesan maksimum ialah dua sasaran
penting yang mana disiasat serentak. Dalam hubungan ini, penyerapan tenaga (SEA)
tertentu dan beban puncak (PL) ialah dua parameter yang memainkan peranan utama
menghasilkan matlamat-matlamat tersebut sebelumnya. Untuk menyiasat
crashworthiness SDB, dua konfigurasi berkereta rentas SDB yang mana bujur dan
segi empat tepat lelak dipilih. Tiga pancalogam bahan magnesium, aluminum dan
keluli sebagai satu bahan rujukan ditugaskan kepada SDB yang bujur dan segi empat
tepat. Sebagai tambahan, simulasi-simulasi ini dikendalikan dengan tiga setiap iaitu
0, 45 dan 90 darjah seiring dengam dinding tegar. untuk kes kajian, kereta rentas
bujur dan segi empat tempat SDB di bawah setiap sudut orientasi diambil kira
dengan mengambil kira dua pembolehubah geometri, ketebalan untuk kedua-dua.
Reka cipta alur dan nisbah jejari minima ke maksima untuk bujur dan nisbah saiz
untuk bentuk segi em empat tepat. Semua langkah-langkah tersebut dilakukan
dengan bantuan perisian LS-DYNA yang mana digunakan secara meluas untuk
masalah-masalah kesan. Rangka kerjapeng optimuman yang pelbagai objektif
digunakan untuk mencari cirri-ciri geometri yar optimum di setiap siri simulasi.
Akibatnya, proses pengoptimuman SDB dijalankan menggunakan kaedah
permukaan (RSM) gerak balas yang kaedah berat menggunakan purata dan kaedah
purata geometri. Siri keputusan dibentangkan menggunakan Pareto graf menujukkan
beberapa jalan penyelesaian dengan mata optimum dan untuk mencapai kedua-dua
objektif tersebut secara serentak. Langkah-langkah pengoptimuman dilakukan
menggunakan perisian MATLAB. Keputusan menujukkan magnesium mempunyai
kebolehan yang baik untuk meresap lebih banyak tenaga berbanding aluminium dan
keluli. Sebaliknya, keratan rentas bujur. Mengurangkan PL seinig dengan reka
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bentuk segi empat tepat. Juga, sudut orientasi 90 darjah menjurus pengurangan PL
berbanding kesannya pada 0 dan 45 darjah. Akibatnya, SDB bujur yang diperbuat
menggunakan magnesium dengan sudut 90 darjah terhadap dinding tegar menjadi
penyelesaian terbaik untuk mencapai penyerapan tenaga (SEA) tertinggi dan bedah
puncak (PL) terendah. SDB terpilih dioptimumkan untuk mendapat reka bentuk
optimum yang menunjukkan ia mempunyai ketebalan 0.5mm dan nisbah jejari
0.284. value untuk SEA dan PL kepada SDB yang optimum adalah 1203.74 (J/kg)
dan 8.477 (kN)masing-masing.
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CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, the number of accidents has increased in the recent years dramatically.
Considering to the last statistical which achieved from the research, more than 1
million people are dead in road accident each year (Murray et al., 2006).
Consequently, the safety of passenger requires more focus on the crashworthiness of
vehicles.

Currently, most of companies in the world spend more money to improve the safety
of cars because it is an essential parameter for customers and an important factor for
competitions between companies productions. Companies perform the impact test on
vehicles to find the best design for improving the crashworthiness. Side impact is
one kind of test to assess the crashworthiness of vehicles. In the side impact, the
crumple zone by accident is limited and occupants are very close to the car body.
Side impact is the second type of common accident after frontal impact.
Accordingly, development of safety for side impact is important. General Motors
was the first company that evaluated the side impact with barrier in 1934 in
Michigan (Raja, 2008).

In the past decades, the companies used a real car for experimental test and then,
they had been analyzed the results which obtained from the test. These tests are too
expensive and time consuming. This problem was solved by researcher when they
used the nonlinear finite element method. Nonlinear finite element method is a tool
to simulate the crash test with high accuracy. This method helps to designers to
analyze the crash test relatively easily with high reliability.

Thin walled structures have more application in industry. In vehicles, thin walled
structures are used because of their lightweight. These structures have a good ability
to absorb the impact energy and resistance against the folding and bending. In this
study, the elliptical and rectangular beams are examined in the impact test. This
beam uses inside the car doors to protect the passengers subjected to the side impact.

In the automotive industry, several kinds of materials are used: steel, magnesium and
aluminum. Due to their properties, steel is stiffer than others, but is heavier. On the
other hand, magnesium is very interesting material, because it is so light. It is three
times lighter than steel, so it is suitable in some part of structures which needs lighter
material.

Response surface method (RSM) is one of the approximate methods that is widely
used for impact problems. In impact problems, maximizing the specific energy
absorption (SEA) and minimizing the peak load (PL) are two targets which have to
obtain simultaneously. In this work, the multi - objective optimization is used to
optimize the size of the beam. The results of multi-objective optimization are
presented by the Pareto Frontier graph. All points in the graph are optimal points. It
depends on designer that which parameter between SEA and PL is more important.
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1.2 Problem Statement

These days, the automotive industry is striving to increase the vehicle fuel
efficiency. It is observed that having more than (Zhang et al. 2008) five percent of
fuel saving could be obtained by 10% decreasing of automobile weight. Many
developments were accomplished about crash analysis to achieve lightweight
purpose without negative effects on energy absorbing ability through impacts.
Considering to the statistics, it demonstrates that nearly 30% of accidents and 35%
of fatalities are caused by side impact (Dong et al. 2007; Fildes et al. 2007). In the
side impact, a side door beam of automotive parts is responsible to absorb the most
of the given energy which is shown in Figure 1.1.

Figure 1.1 Side door beam of frontal vehicle door

Consequently, the weight of the beam is the first problem that needs to be reduced to
decrease the fuel consumption, and on the other hands, improving the
crashworthiness of the beam is the second problem that needs to be increased to
absorb the most impact energy and decrease the transfer load to occupants.

1.3 Research Objectives

The research study of this study is to obtain an optimized SDB made of elliptical and
rectangular cross-section. FEA is employed as a simulation tool to obtain the SEA
and PL when the multi-objective tool is used as a means for optimization work. The
specific objectives of the present work are:
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1- To investigate the effect of material and the orientation angle of impact
loading on the structural behavior of elliptical and rectangular SDB subject
to the side impact.

2- To obtain the optimal design of both the elliptical and rectangular section
beams subjected to side impact loading using multi-objective optimization.

Based on the previous studied which are mentioned in chapter 2, changing the
materials and the cross section of the beams can lead to the improvement of the SEA
and have a positive effect to decrease the PL. Moreover, the position of the beam
while it collides with the rigid wall can cause to change the PL. So, these are the
research hypothesis which are investigated to be proved.

1.4 Research Scope

As it is mentioned, the goal of this research is improving the crashworthiness of
SDB. To achieve this goal, elliptical and rectangular configuration of the SDBs are
selected for impact analysis. The materials which are used for the SDBs are alloy
steel AISI1006, alloy aluminum 3105-H18 and alloy smagnesium AZ31B. These
materials are selected because they are widely used in the automotive industry. The
orientation angle of SDB to rigid wall is another item which investigated for all
SDBs that have different materials. Three angles of 0,45 and 90 degrees are selected
for investigation. To evaluate the impact tests, The CAD data of the SDBs are
modelled, meshed and simulated in Ls-Dyna 3.1 Beta software. After that, multi-
objective optimization is applied to achieve the optimal design. In this research, the
results optimized by MATLAB software.

1.5 Thesis Structures

This thesis consists of five chapters. First chapter consists of problem statement,
objectives, research scope and thesis organization. In the second chapter, literature
review is written that it shows what works have been done with other researchers till
yet. The third chapter is methodology which explains the way of working on this
study. Chapter 4 consists of the results and discussion that shows the results of
impact test on beam and also Optimization of the results is done for getting the
optimal design. Finally the last chapter shows the recommendations and conclusions
of this research.
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