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The fluid flow behavior in an alternating current (AC) electroosmotic micropumping 

device has been studied experimentally and theoretically using an electrohydrodynamic 

theoretical model applied to a computer simulation model. It has been analyzed using 

two different theoretical approaches; first is "Ramos slip velocity" and the second, 

"Coupled ACEO numerical" model. This micropump is using a coplanar microelectrode 

array that engages the principle of AC electroosmosis (EO), ion driven in the direction 

of surfaces due to Coulomb forces by tangential electric fields. These ions, when 

activated, produce a net movement of fluid flows caused by viscous drag forces. The 

result of AC electric field to an electrolyte using coplanar microelectrodes creating a 

travelling wave of potential and has given steady fluid flow across the microelectrode 

array. The flow has its origin in the interaction of the tangential component of the 
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nonuniform field with the induced charge in the electrical double layer on the electrode 

surfaces.  

 

The velocity that experimentally measured was from movies collected by researcher at 

Southampton University in United Kingdom. Two micrometer size of particles were 

suspended in potassium chloride (KCl) with conductivity 14.5 µS/m was used as an aid 

of visualization in order to measure the fluid velocity when the device work as pump. 

The experimental results were reviewed for different range of voltages (2 Vpp- 20 Vpp) 

and frequencies (10 kHz -10 MHz). Maximum velocity was achieved at an AC signal 

frequency of 90 kHz in 16 Vpp approximately 3.1 x 10
-1

 µm/s. They were in good 

agreement with the theoretical predictions, produced using the computer simulation 

model with MATLAB and COMSOL.  

  

Overall, the bulk fluid flow driven by this surface is numerically calculated as a function 

of voltage and frequency. It shows a good agreement between the numerical and 

experimental streamline and comparable to previously computer simulation framework 

to analyze future micropump design concepts. 
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Perilaku aliran bendalir dalam arus ulang-alik (AU) peranti pam mikro elektroosmotik 

telah dikaji secara eksperimen dan teori dengan menggunakan model teori 

elektrohidrodinamik yang digunakan untuk model simulasi. Ia telah dianalisis dengan 

menggunakan dua pendekatan teori yang berbeza, pertama adalah "halaju tergelincir 

Ramos" dan kedua, model "gandingan berangka ACEO". Pam mikro ini menggunakan 

pelbagai elektrod sesatah yang melibatkan prinsip elektroosmosis AU (EO), di mana ion 

didorong ke arah permukaan yang disebabkan oleh daya Coulomb teraruh oleh tangen 

medan elektrik. Apabila diaktifkan ion-ion ini, ia akan menghasilkan pergerakan bersih 

aliran cecair disebabkan oleh daya-daya seretan likat. Hasil medan elektrik AU kepada 

elektrolit yang menggunakan elektrod mikro sesatah mewujudkan keupayaan gelombang 

pergerakan yang telah memberikan aliran bendalir yang mantap di seluruh elektrod 
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mikro itu. Aliran ini mempunyai asal mula dalam interaksi komponen tangen medan cas 

tak seragam dengan muatan teraruh disebabkan terdapat lapisan elektrik berganda pada 

permukaan elektrod.  

Halaju yang diukur adalah hasil dari eksperimen adalah daripada filem yang dikumpul 

oleh penyelidik di Universiti Southampton di United Kingdom. Zarah bersaiz dua 

mikrometer diletakkan didalam kalium klorida (KCl) dengan kekonduksian 14.5 μS / m 

telah digunakan sebagai bantuan visual untuk mengukur halaju bendalir apabila peranti 

bekerja sebagai alat pam. Keputusan eksperimen telah dikaji semula untuk pelbagai jenis 

voltan (2 Vpp-20 Vpp) dan kekerapan (10 kHz -10 MHz). Halaju maksimum dicapai 

pada isyarat frekuensi 90 kHz AU dalam 16 Vpp kira-kira 3.1 x 10
-1

 μm / s. Dengan 

keputusan yang dihasilkan ini maka ianya berada dalam perjanjian yang baik dengan 

ramalan teori yang menggunakan model simulasi komputer MATLAB dan COMSOL. 

 

Secara keseluruhannya, sebahagian besar aliran bendalir yang didorong oleh permukaan 

ini dikira secara berangka sebagai fungsi voltan dan kekerapan. Ia menunjukkan satu 

perjanjian yang baik diantara angka dan eksperimen yang selaras dan setanding dengan 

rangka kerja simulasi komputer sebelum ini untuk menganalisa konsep rekabentuk pam 

mikro masa depan. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

1.1 Background 

When studying a class of devices it is always useful to have a good understanding of 

potential target applications. In the case of microfluidic systems, common target 

applications include chemical and biological analyses, biological and chemical sensing, 

drug delivery, molecular separation, amplification, sequencing and synthesis for 

environmental monitoring. A microfluidic system is one where fluid flows in miniature 

devices. It makes biological assays more effective through reduced reagent quantities 

and shorter reaction time. It is relatively inexpensive and can be integrated with other 

functional miniaturized components. It can contribute to the precision control systems of 

industries such as automotive, aerospace and machine tools. Most microfluidic systems 

have two or three-dimensional microchannels through which fluid samples are pumped 

(often concurrently and in various mechanisms), controlled and manipulated [1]. 

 

Most microfluidic systems need a self-contained active pump of a size comparable with 

the volume of fluid to be pumped. The key considerations for them include their 

reliability, power consumption, actuation voltage, ease and cost of fabrication, 

biocompatibility and a dosing accuracy comparable with that of a fuel pump [2]. A 

typical micropump is a MEMS device; it is the actuation source through which a fluid 

sample (drugs and therapeutic agents) is transferred with precision, accuracy and 

reliability from a reservoir to the target [3]. Typical applications include drug delivery 
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and biomedical pharmaceutical, environmental monitoring and even homeland security 

applications such as Micro Total Analysis Systems (µTAS) or Lab-on-a-Chip (LoC) and 

Point of Care Testing Systems (POCT); reliability and robustness of the micropump are 

thus essential [4]. In such diagnostic systems, integration and miniaturization are 

achieved by combining them on a single chip or package, if MEMS micropumps, 

biosensors and a controlled drug delivery system. The controller can precisely calculated 

and released an optimal amount of drug at an optimal time through the microactuator. 

The controlled drug release includes localized and precise site-specific drug delivery. It 

has many potential benefits besides reducing side effects (e.g. fluctuating levels of the 

circulating drug) and increasing therapeutic effectiveness [5]. 

 

Development of micropumps that was usable in single or two-phase cooling of 

microelectronic devices has been a challenge because  in microelectronics cooling the 

flow-rate requirement is highly demanding [6]. Recent developments in miniaturization 

of these systems have enabled their application to chemical and biological analyses. An 

obvious advantage of miniaturization besides if reduce the form factor of the systems 

when applied to micro total analysis system, is the yield of reduce improvement to 

performance (e.g. faster completion of assays) and cost reduced (e.g. through fewer 

manual interventions, decreased in amount of samples and reagents used, cost of 

fabrication cost and the use of disposable substrates [7]. Miniaturization also aids in 

system transportation which can give lots of advantageous to some applications [8]. 

Space exploration can also benefit from micropump technologies. Transportation of 
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miniature roughing pumps for mass spectrometer systems, for example, meets the 

lightweight requirement of spacecraft [9].  

The first real MEMS micropumps were fabricated by using conventional technique. 

Only in 1984 a micropump based on silicon microfabrication technologies had begun 

and this has attracting interest, when the size can be  reduced and when fully functional 

pump can be created. The results were published by Smits in 1990. It was a peristaltic 

pump with three active valves actuated by piezoelectric discs. It was developed 

primarily for pre-measured insulin delivery in automatic systems that maintain diabetic 

patients’ blood sugar levels [10]. 

 

In 1988 Van Lintel at al. had presented the first micropump that has passive check 

valves. Theirs was the first attempted at fabricating on a silicon that functioned on 

piezoelectric actuation. It was still a three-layer set-up - two glass sheets enclosing an 

anisotropically etched silicon wafer [11]. 

 

The past 10 years have seen various pumps introduced (whether with moving or non-

moving parts) and scaled down, and many papers on micropump invention have been 

published. Some review articles commented on those invention, particularly concerning 

mechanical part of the micropumps [12].  

 

The membrane of a mechanical micropump can be actuated whether by 

piezoelectrically, pneumatically, electrostatically, or electromagnetically. All the 

membrane types would allow pumping of almost any kind of liquid. Their typical flow 
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rate is 1±100 ml/min. The membrane actuation mechanism is the one that affects the 

flow [13].  

 

Non-mechanical micropumps have no moving parts; they can create a free-flow pulse. 

Their fluid driving force can be magnetic, thermal, chemical (as in osmotic pumps), 

acoustical, or electrical actuation. Electrohydrodynamic pumps can pump dielectric 

liquids, whereas the air bubbles produced through electrolysis in electrochemical pumps 

expulse the solution from a close reaction chamber, and electrokinetic pumps are driven 

by the effect of electroosmosis and electrophoresis [14].  

 

1.2 Motivation and Problem statement 

More than 10 years of significant research have been invested on developing chip-based 

capillary electrophoresis systems with electroosmotic flow (EOF) pumping mechanism. 

Some of those were pioneering. Those systems have the voltage applied across the 

length of the solution conduit. Creating high pressure in the small capillaries is also 

possible, unlike in Newtonian systems [15]. Despite those features, EOF still has one 

important limit of practicality. The composition of the pumping fluid affects EOF 

characteristics. A very high or very low pH of the carrier solution, a highly conductive 

saline, or a non-conducting organic medium will result in the current levels being either 

excessive or inadequate to support significant EOF [16]. 

  

In this project the ACEO micropump was chosen as pumping mechanism because of the 

above mentioned advantages, and also because the technology required building such 
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electroosmotic pumps and their associated microfluidic components is uncomplicated. 

Moreover, at the moment, modeling and simulation on low power micropump are not 

very extensively discussed in papers or in the research especially with MATLAB 

software.  

 

1.3 Research aim and Objectives 

The objectives for this project are to analyze fluid flow of ACEO micropump using an 

electrolyte fluid medium to measure velocity and to compare the experimental results to 

the theoretical results produced with the theoretical model in MATLAB software and to 

extend study on modeling and simulation of low power ACEO micropump in Comsol 

Multiphysics 4.3a software. It was hoped that the numerical model could be used or 

improved for evaluating future design concepts to estimate their performance practically 

before committing to fabricate a device. The objectives for this project are; a) To 

analyze experimental fluid flow velocity profile using Vision Assistant (VA) and 

Labview program and mathematical calculation.b) To simulate and model the fluid flow 

velocity profile using the appropriate model(mATLAB  and Comsol Multiphysics 4.3a. 

c) To compare results from model and experimental results.  

 

1.4 Method statement 

One of the key challenges and important aspect of this thesis is the measurement of the 

velocity of the ACEO micropump. The theoretical analysis of the microfluidic device 

was reported can be completed using the finite element method [17]. Therefore the 

method of this project was to apply a previously developed theoretical model [18] to 
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extract as much information as possible from analysis results because an improved 

understanding of theoretical ACEO models would aide in the assessment of future 

ACEO microfluidic array design concepts.  

 

The initial approach was to fabricate the micropump with the required dimensions in 

glass, but unfortunately there was no available equipment in the laboratory that was 

suitable for the fabrication of this type of micropump. The best available alternative to 

measure the velocity is an experimental data that was collected by researcher at 

Southampton University in United Kingdom. The experimental work was captured and 

documented in a movie that shows the fluid flow consist of two micrometer particles in 

potassium chloride (KCl) in a glass substrate , but the results and velocity measurements 

have never been analyzed which I intend to do as part of my research work. A very 

precise equipment was used to prepare this movie, including high precision microscope 

to perform the measurements.  

 

1.5 Thesis arrangement 

The thesis is organized as follows: Chapter 2 will present classification of micropumps, 

evaluation of micropumping technologies and the theory required to understand ACEO. 

Chapter 3 presents MEMS technology and fabrication method used for electroosmotic 

pumps. Chapter 4 presents the theoretical model used and how it was applied to the 

MATLAB software to generate the numerical results. For the experimental, the 

measurement of the velocity of the ACEO micropump with the specific dimensions has 



© C
OPYRIG

HT U
PM

 

 

7 

 

been focused.  Chapter 5 consists of a discussion and future work and recommendation 

Finally the conclusions reached in this project is summarized. 
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