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Abstract 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

 

COMPARISON BETWEEN SPECIFICATIONS OF LINEAR REGRESSION 

AND SPATIAL-TEMPORAL AUTOREGRESSIVE MODELS IN MASS 

APPRAISAL VALUATION FOR SINGLE STOREY RESIDENTIAL 

PROPERTY 

 

By 

 EBRAHIM JAHANSHIRI 

May 2013 

Chairman:  Assoc. Prof. Abdul Rashid b. Mohamed Shariff, PhD 

Faculty:  Engineering 

 

Property valuation is an area of interest for property owners, real estate agents, 

government bodies and researchers. There are various approaches to estimate a property 

value. Among them, the statistical and spatio-temporal methods incorporate the location 

and time in the valuation modelling. These models however, are not widespread as the 

simple linear models due to scarcity of proper data and incomprehensive research 

findings on their implementation issues. Effects such as normality treatment, definition 

of neighbourhoods and weights and choice of autocorrelation parameter and parameter 

estimation are some of the complexities that are inherent to these models. This study 

therefore, was designed to investigate different aspects of spatial and spatio-temporal 

autoregressive modelling. Further, the performance of these models compared to the 

standard linear model that is widely used in mass appraisal of real properties, was 

studied. Datasets of transacted terrace houses over the period 1999-2009 from Selangor, 
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Malaysia were obtained and geocoded for analyses using cadastral and topographic 

maps and online mapping services. A complete data analysis was carried out on the 

datasets. Furthermore, various spatial, temporal and spatio-temporal neighbourhood and 

weighting schemes, optimization algorithms and lag and error modelling scenarios were 

created and tested with the data. A hold-out validation was performed for different sets 

of experiments. The best set of parameters that could produce more accurate results in 

the validation process, were selected and their associated neighbourhood and weights 

were used to compare with the linear models. The experiments were replicated on three 

different treatments based on removal of outliers and transformation of variables with 

high value of skewness. The results showed that although there was a strong presence 

of spatial autocorrelation in the dataset, especially when the outliers are removed, the 

results of linear and spatio-temporal models are mixed. The best result using criteria of 

coefficient of determination and the uniformity level of prediction belonged to the 

spatio-temporal lag and spatial lag models respectively. The error variant of the 

abovementioned models could only reduce the problem of heteroscedasticity in 

regression error residuals. Linear regression model could provide better uniformity 

level at the expense of very low R
2
 and higher heteroscedasticity in residuals. It was 

also found that the graph based neighbours would increase the chance of the spatial 

model to predict better. Furthermore, the row-standardized or stochastic weight 

matrices showed to be more effective compared to other weighting schemes. Finally, it 

was demonstrated that incorporating the space and time interaction (S×T or T×S) 

autocorrelation in the spatio-temporal model along with higher time interval between 

dates of transactions in temporal neighbourhood selection would produce more reliable 

results in prediction for spatio-temporal autoregressive models.  
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Abstrak 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

PERBANDINGAN ANTARA SPESIFIKASI BAGI LINEAR REGRASI DAN 

MODEL autoregresif SPATIAL-keduniaan MASS PENILAIAN PENILAIAN 

UNTUK STOREY SINGLE RUMAH BERKELOMPOK 
 

Oleh 

 EBRAHIM JAHANSHIRI 

Mei 2013 

Penyelia:  Prof. Madya Abdul Rashid b. Mohamed Shariff, PhD 

Fakulti:  Kejuruteraan 

 

Penilaian hartanah adalah kawasan yang menarik untuk pemilik harta, ejen hartanah, 

badan-badan kerajaan dan penyelidik. Terdapat pelbagai pendekatan untuk 

menganggarkan nilai hartanah. Antaranya, kaedah statistik dan spatio-temporal 

menggabungkan lokasi dan masa dalam pemodelan penilaian. Model-model ini 

bagaimanapun tidak meluas sebagai model linear mudah kerana kekurangan data yang 

betul dan hasil penyelidikan mengenai isu-isu Partial pelaksanaannya. Kesan seperti 

rawatan normal, definisi kawasan kejiranan dan berat dan pilihan parameter 

autokorelasi dan penganggaran parameter adalah beberapa kerumitan yang wujud untuk 

model ini. Kajian ini oleh itu, telah direka untuk menyiasat aspek pemodelan 

autoregresif ruang dan spatio-temporal. Selanjutnya, pelaksanaan model ini berbanding 

dengan model linear standard yang digunakan secara meluas dalam penilaian besar-

besaran hartanah sebenar, telah dikaji. Dataset rumah teres yang diurusniagakan dalam 

tempoh yang 1999-2009 dari Selangor, Malaysia telah diperolehi dan Geocode untuk 
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analisis menggunakan kadaster dan peta topografi dan perkhidmatan pemetaan dalam 

talian. Analisis data lengkap telah dijalankan ke atas dataset. Tambahan pula, pelbagai 

kejiranan dan pemberat skim spatial, temporal dan spatio-temporal, algoritma 

pengoptimuman dan lag dan kesilapan senario telah dimodelkan yang dicipta dan diuji 

dengan data. Satu pengesahan memegang keluar telah dilaksanakan ke atas set 

eksperimen. Set terbaik parameter yang boleh menghasilkan keputusan yang lebih tepat 

di dalam proses pengesahan, telah dipilih dan yang berkaitan kejiranan mereka dan 

berat telah digunakan untuk membandingkan dengan model linear. Kajian ini telah 

ditiru kepada tiga rawatan yang berbeza berdasarkan penyingkiran unsur luaran dan 

transformasi pembolehubah dengan nilai yang tinggi kepencongan. Hasil kajian 

menunjukkan bahawa walaupun terdapat kehadiran yang kukuh autokorelasi spatial 

dalam dataset, terutamanya apabila unsur luaran dikeluarkan, keputusan model linear 

dan spatio-temporal dicampurkan. Keputusan terbaik menggunakan kriteria pekali 

penentuan dan tahap keseragaman ramalan milik lag spatio-temporal dan model lag 

ruang masing-masing. Varian ralat daripada model tersebut di atas hanya dapat 

mengurangkan masalah heteroskedastisiti dalam sisa ralat regresi. Model regresi linear 

boleh menyediakan tahap keseragaman yang lebih baik dengan mengorbankan sangat 

rendah R
2
 dan heteroskedastisiti lebih tinggi dalam sisa. Ia juga mendapati bahawa jiran 

graf berdasarkan akan meningkatkan peluang model ruang untuk meramalkan yang 

lebih baik. Tambahan pula, matriks berat badan barisan seragam atau stokastik 

menunjukkan untuk menjadi lebih berkesan berbanding dengan skim pemberat lain. 

Akhirnya, ia telah menunjukkan bahawa menggabungkan ruang dan masa interaksi (S × 

T atau T × S) autokorelasi dalam model spatio-temporal bersama-sama dengan jarak 

waktu yang lebih tinggi di antara tarikh urusniaga dalam pemilihan kejiranan duniawi 
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akan menghasilkan keputusan yang lebih tepat dalam ramalan untuk spatio model 

autoregresif-sementara. 
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 General Introduction 

 

Statistical methods are now important part of the data analyses in disciplines that deal 

with data and information. These methods provide a level of assurance for the uncertain 

activities like measurements, pattern recognition, forecasting and prediction.  

 

The methods of data analyses are always evolving due to increase of our understanding 

of natural and human induced phenomena through science of data analysis. The growth 

of data collection facilities, computing power and infrastructure in the recent years has 

definitely leveraged scientific conclusions (Anselin, 1998; Rowley, & Fisher, 1998). 

 

One of the most important advancements in the statistical methods was the introduction 

of spatial analysis, based on the laws of geography, to the statistical methodologies (De 

Smith; Longley, Goodchild, Maguire & Rhind, 2006). These methods that are now 

classified into the spatial statistical methods have become widespread in the regional 

sciences that deal with the geographical data. This introduction provided an exciting 

opportunity for econometric researchers to apply these methods to real estate data. 

These methods were then improved and a branch of research called spatial 

econometrics was proposed (Anselin, 1988). The foundation of spatial econometrics is 
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spatial regression that deals with the two important criteria, spatial autocorrelation and 

heterogeneity. Positive or negative spatial autocorrelation reduces the total information 

derived from the observations, because “nearby observations can be used to predict 

each other” (Cliff & Ord , 1970; Bivand, Pbesma & Gómez-Rubio, 2008). 

 

Real estate valuation have also benefited from these methods through analyses of 

economic variables or econometrics, hypothesis testing and prediction using multiple 

regression analysis (MRA). Numerous spatial statistical methods have been devised to 

use spatial autocorrelation in prediction. Nonetheless, MRA is still considered the 

standard method for prediction of house prices and many computer-assisted mass 

appraisal systems (CAMAs) have been developed using MRA methodology. In these 

systems the “spatial” characteristics of real estate data is only available in the form of 

simple maps showing the location of properties. The proximity as locational indicator in 

the form of closeness to amenities and central business district are closest that these 

systems can get to utilize the spatial effects in prediction. The spatial methods however, 

are gaining appreciation in the mass appraisal through extensive research on different 

aspects of these methods. Many of the functions specific to spatial econometrics are 

now available to researchers (Bivand, et al., 2012) and lots of research is going to be 

done on these methods that will facilitate the adoption of these methodologies into the 

CAMAs (McCluskey & Adair, 1997).   

 

Similar to other data that happen on the space-time continuum, the real estate data has 

also temporal characteristics. Time series forecasting has been used in econometrics 

analysis. The interaction of space and time and its impact on the spatial autocorrelation 
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are gaining attention and the use of spatio-temporal methods that only recently have 

been introduced in the literature is becoming widespread (Cressie, 2011).  

 

One of the important challenges in spatial hedonic modelling (SHM) using the 

autocorrelation effect is to identify the “relationships or influences” over the spatial, 

temporal and spatio-temporal domains.  Issues such as the degree of effectiveness of 

spatial neighbours and time frame of temporal neighbours need to be addressed as well. 

 

Such effects are normally added to the hedonic model with the weight matrices that aim 

to filter the spatial, temporal and spatial temporal effects, thus, increasing the prediction 

accuracy. The variables used in the model were designated as lagged variables for both 

dependant (price) and also error terms (residuals). One question to investigate is the 

definition of these lagged variables and how to improve the model using the contiguity 

weight matrices. Also as the real estate data can be considered mostly irregularly spaced 

data both in space and time, there is a challenge on the decomposition of spatial 

dependence into spatial and temporal weight matrices so that the integrity of prediction 

results are preserved. These aspects make the research on the spatial methods 

interesting.  
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1.2 Problem Statement 

 

Property managers are mandated by the tax laws and rates policies to standardize their 

valuations of market. Creating standard models in addition to consistency will lead to 

stable real estate market and macro economy. A value that is announced by the real 

estate companies need to be justified through declaring all its components and therefore 

using specifically tailored and standardized models will assist both real estate 

companies and the government bodies to stabilize the market.  In Malaysia, the 

appraisal is done through professional valuers that are trained both in industry and 

university. Valuer’s judgment is an important part of any appraisal. However, 

repeatability, measurement of error and speed of assessment are some of the reasons 

that using manual valuation is not suggested in tasks that need mass appraisal. The 

assessment techniques can help the appraisers to achieve higher accuracy in relatively 

shorter amount of time. However the initial modelling effort is needed to fine tune these 

somewhat complex techniques.  

 

Multiple regression models are long being used in Malaysia and other parts of the world 

to create values for the rating and other purposes. Rigorous assumptions like 

independency of observations may render the results of these models invalid. Spatial 

autoregressive models as the extension of the simple linear models have been 

introduced before, however, their specifications, modelling aspects and implications 

especially when the time domain is added to the data, have not been comprehensively 

studied. The evidence for it is the hesitation of the mass appraisers to use these 

somewhat theoretically complicated models in the prediction of valuation and CAMA. 
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Therefore, more detailed studies such as comparison between their different 

specifications and overall performance compared to the de facto model (MRA) is 

required. Therefore, it is important to address the behaviour of these models, and to 

provide insight as to how these models can be easily used in the prediction given the 

availability of data and computing power.   

 

Some other issues that have not been well addressed: 

 The effect of time and space-time contiguity on the prediction of irregularly 

spaced real estate data that are dispersed both in space and time domain, using 

spatial and spatio-temporal autoregressive models. 

 The effect of increasing the number of autocorrelation parameters in spatial 

autoregressive models and their interaction on the prediction and accuracy of 

spatial models. 

 The effects of different treatments i.e. removal of outliers and transformation on 

the results of prediction neither for autoregressive models nor for the MRA 

model have been studied.  

 The implication of different model specifications on real estate prediction scene 

in Malaysia is not well known.  

 The concept of “market delineation” using the known categories of houses in 

Malaysia has not been considered. 

Using the above problem set several hypotheses can be developed. For example a null 

hypothesis can be formed on the efficiency of the prediction using the submarkets based 

on the type of houses. Also between the removing of the outliers and transforming the 
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variables, a hypothesis can be developed so that the efficiency of each of these methods 

can be examined against the other. Also usage of time in the autoregressive models of 

mass appraisal prediction can be formulated into a hypothesis.  

   

1.3 Objectives of the Study 

 

Appraisal community has used the benefits of multiple regression analysis in mass 

appraisal prediction. This type of model provides the basic necessities, but fails to make 

accurate prediction due to assumptions and it’s complete negligence of inherent 

characteristics of transacted data. One of the major advancements in the prediction 

models is the introduction of spatial and quite recently spatio-temporal effects to the 

regression modelling. The specification of these models especially the latter have not 

been studied well in the literature and it is possible that the lack of clear methodology 

on the performance of these models have hindered the broad usage of these models in 

the real estate sector. Therefore, this research was devised to comprehensively study the 

important spatial regression models. Specifically, the objectives of this research are: 

 

1 To compare the performance of different “spatial” and “spatio-temporal” 

“neighbourhood” and “weight” as well as “lag” and “error” specifications of 

autoregressive models using Malaysian transacted data.  

2 To ascertain the kind of normality treatment that provides the spatial models 

the means to do better predictions. 
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3 To determine the best optimization algorithms for the maximum likelihood 

(ML) estimation of spatio-temporal models. 

 

1.4 Scope of the Study 

 

In this experiment, the main purpose is to show the strength and weakness of spatial and 

spatio-temporal modelling that utilize spatial autocorrelation using available data from 

Malaysian real estate market. Therefore, this study was set to examine the modelling 

results using different normality treatments, maximum likelihood parameter estimation, 

performance in validation and their reaction to different data treatments both in space 

and space-time domain. This study considered a relatively homogeneous market data so 

that determining the best model that utilizes spatial autocorrelation is possible. The 

scope of research covers a hold-out validation on a randomly selected portion of the 

original data so that the best models that emerge can be recommended to the industry 

for implementation.  

 

As different specifications of the neighbourhood (both space and time) and weight 

matrices lead to different results and predictions, these models need to be compared to 

the widely used multiple regression model. Moreover, for the multi-autocorrelation 

parameter models there is an uncertainty on how these parameters would perform in 

optimization and between themselves and also in comparison to other models. This 

objective was added to the study so that pinpointing the best characteristics of the 

models is easier for the mass appraisal practitioners.  
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1.5 Significance of the Study 

 

Although using statistical methodology is straightforward, the process of reaching to the 

point of fair value is far too difficult and involves many important considerations 

(Slack, 2001). That is the reason for the common mass appraisal firms and institutions 

adherence to only the application of multiple regression analysis which is the regression 

of the dependant variable over a series of independent variables.  These variables are 

either endogenous to the dependant variable or exogenous variables. Using of the 

inherent nature of data that is dependency, adjacency and relativeness are neglected by 

the industry that often need a readymade and tailored methodology and robust results to 

reach the decisions. Therefore, research on advanced models and standards of mass 

appraisal is absolutely necessary for each country. Moreover given the complexity of 

these models, different aspects of data and models are not normally studied extensively 

in a typical mass appraisal prediction project.  

 

The situation with mass appraisal prediction in Malaysia does not differ significantly 

from the world. Malaysia as a developing country that aims to become a developed 

country, is dealing with the same challenges in mass appraisal prediction. For example 

justifying the re-evaluation by the government bodies is challenging since in most cases 

the subjectivity can influence the results and also lack of consensus on the usage of 

unified modelling systems has caused many disputes in the recent years. The current re-

evaluation period which is 10 years in Malaysia does not reflect the current pace of 

developing in the country. This may result in the decrease of government revenue and 

therefore, down-pacing growth in the future (Daud, Alias & Muthuveerappan, 2008). 
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Moreover neglecting the inclusion of standards in mass appraisal that utilize the spatial 

domain that is already implemented in some countries like US and Australia (Parker, 

Lockwood & Marano, 2011), will result in disputes over the fairness of the process of 

mass appraisal.  

 

This research therefore, strives to pave the way for the use of the advance models in the 

mass appraisal prediction by the industry contributing towards (i) automated valuation 

for real estate properties particularly the determination of the regression coefficients 

and (ii) elimination of subjectivity in the valuation or properties (iii) providing 

methodologies to encourage the usage new methods in the mass appraisal prediction. 

There is a great need for increasing our understanding about the state of the art 

statistical and regression based models globally, and this research will contribute to that 

understanding. Moreover, as the ultimate integration of spatial and spatio-temporal 

mass appraisal models into valuation systems is inevitable, the methods and codes 

developed for this research will be part of such systems in the future.   

 

1.6 Organization of Thesis 

 

Chapter one introduces the work and provides motive on how the research on the spatial 

models are necessary so that these models can be used widely in the real estate sector. 

Chapter two provides the literature review of the models, theoretical basis for the 

models and parameter estimation. Chapter three describes the methodology of the 

experiments, the organization of code and preparations of the results. Chapter four 

presents the results and discussion on different specifications of the spatio-temporal 
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autoregressive models as well as the discussion on the performance of all of the models. 

Chapter five concludes the thesis and provides key achievements and challenges of the 

research based on the objectives of the current study as well as recommendations and 

future work.  
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