UNIVERSITI PUTRA MALAYSIA

MECHANICAL PROPERTIES OF THE AS-CAST QUARTZ PARTICULATE REINFORCED LM6 ALLOY MATRIX COMPOSITES

M. SAYUTI.

FK 2005 15
MECHANICAL PROPERTIES OF THE AS-CAST QUARTZ PARTICULATE REINFORCED LM6 ALLOY MATRIX COMPOSITES

By

M. SAYUTI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia
In Fulfilment of the Requirements for the Degree of Master of Science

October 2005
In the Memory of

My Father, Allahyarham Fadhlil Aziz
And
Allahyarham Saputra Zamani, Afzal Zikri

And

Special Dedication to

My Mother, H. Cut Nurlaila
My Wife Malahayati
And
My Daughter, Nyak Intan Fazilati and Nyak Qurratu Aini

M. Sayuti
2005.
Metal matrix composites are engineered materials combine two or more materials, one of which is a metal, where the tailored properties can be attained by systematic combination of different constituents. A variety of methods available for producing these advanced materials includes the conventional casting process which is considered as the easiest processing technique. Preparation of these composite materials by foundry technology have the unique benefit of near-net shape fabrication in a simple and cost effective manner. Besides, casting processes lend themselves to manufacture large number of complex shaped components of composites at a faster rate required by the automotive, transportation, sports and other consumer oriented industries. In this study, quartz-silicon dioxide particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process by varying the particulate addition by volume fraction on percentage basis. Tensile and hardness tests and scanning electron microscopic studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and
fracture surface analysis to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the quartz particulate reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites decreases with the increase in addition of quartz particulate. In addition, particulate-matrix bonding and interface studies have been conducted to understand the mechanical behavior of the processed composite materials and it were well supported by the fractographs taken by the scanning electron microscope. The fractographs taken after the tensile test illustrates the particle pullout from the matrix due to lack of bonding and load deformation characteristic mechanism.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIFAT MEKANIKL BAGI ZARAHAN AS-CAST QUARZA YANG DIPERKUAT LM6 ALOI MATRIK KOMPOSIT

Oleh

M. SAYUTI

Oktober 2005

Pengerusi : Profesor Madya Shamsuddin Sulaiman, PhD
Fakulti : Kejuruteraan

Besi matrik komposit merupakan bahan kombinasi kejuteraan dua atau lebih bahan, salah satu dari padanya adalah logam, dimana kandungan yang dibuat boleh dicapai dengan kombinasi sistematik pelbagai bahan. Pelbagai kaedah yang sedia ada untuk mencipta bahan termaju ini, termasuk proses acuan konvensional yang dianggap sebagai teknik/proses yang paling mudah. Penyediakan bahan komposit ini dengan teknologi peleburan mempunyai kebaikan unik dengan bentuk fabrikasi “near-net” yang mudah dan jimat, selain itu proses acuan membantu dengan sendiri untuk mengeluarkan komponent berbentuk komplek yang besar komposit pada tahap yang cepat yang diperlukan oleh pihak automotif, pengangkutan, sukan dan lain-lain industri yang tumpukan pada cita rasa pengguna. Dalam kajian ini, quarza-zarahan silikon dioksida yang dikukuhkan dengan komposit matrik LM6 aloi bertetulang di fabrikasikan dengan proses pengacuan pasir karbon dioksida dengan mengubah campuran (zarahan) dengan kandungan berpandukan pada peratusan. Ujian tegangan dan ujian kekerasan serta mikroskop electron
ACKNOWLEDGMENTS

In the Name of Allah, Most Gracious, Most Merciful

First of all, I would like to express my sincere gratitude and deep thanks to my supervisor Associate Professor Dr. Shamsuddin Sulaiman and co-supervisor Prof. Dr. Abdel Magid Hamouda for their kind assistance, support, advice, encouragement, and suggestions for this work and during the preparation this entire thesis.

Furthermore, I would like to take this opportunity to show my deepest appreciation and gratitude to Dr. Hasan Yudie Sastra for his advice, valuable suggestion, and comments given by him time to time.

Besides, I would like to express my deep gratitude and sincere thanks to my colleague Mr Thoguluva Raghavan Vijayaram, full-time PhD Research Scholar in Department of Mechanical and Manufacturing Engineering Universiti Putra Malaysia and once again thank him for his consistent help and encouragement.

I would like to convey my sincere thanks to Mr Saifuddin Ahmad, Technician of foundry lab for his valuable assistance and efforts given during the melting and pouring of composite castings.

Lastly but not least, to my wife, Malahayati, My Mother, Hj. Cut Nurlaila, my Daughter Nyak Intan Fazilati and Nyak Qurratu Aini for their continuous love, support and encouragement to complete my project thesis.

I convey my thanks to all of my colleagues, friends, housemate and UPM support staff.

M. SAYUTI
I certify that an Examination Committee met on 7th October 2005 to conduct the final examination of M. Sayuti on his Master of Science thesis entitled “Mechanical Properties of the As-cast Quartz Particulate Reinforced LM6 Alloy Matrix Composites” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ir. Barkawi Sahari, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ir. Mohammad Sapuan Salit, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Wong Shaw Voon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Ahmad Fauzi Mohd Noor, PhD
Associate Professor
Faculty of Engineering
Universiti Sains Malaysia
(Independent Examiner)

ZAKARIAH ABDUL RASHID, PhD.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 DEC 2005
This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Shamsuddin Sulaiman, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdel Magid Hamouda, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Hasan Yudie Sastra, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 JAN 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

M. SAYUTI

Date: 23/11/2005
LIST OF TABLES

Table	Page
2.1. List of common matrix materials used in composite application | 22
2.2. Properties and application of MMC | 28
2.3. The mechanical, thermal and electrical properties of LM6 | 32
2.4. Composition of LM6 (%) | 33
2.5. The chemical composition of matrix alloy | 33
2.6. LM6 chemical composition | 34
2.7. Properties of SiO₂ | 35
3.1. The weight ratio of SiO₂ into Al | 53
4.1. Tensile properties of aluminum reinforced quartz particulate | 66
4.2. The average result of Al+SiO₂ tensile test | 70
4.3. Hardness test with varying % weight fraction of quartz | 72
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Effect of particle volume fraction and size on the hardness of L6/Al2O3 composite.</td>
<td>13</td>
</tr>
<tr>
<td>2.2. Ultimate tensile strength as a function of the Al2O3 content and size</td>
<td>14</td>
</tr>
<tr>
<td>2.3. The relationship between Vicker's hardness and the volume percentage of the SiO2 particles</td>
<td>15</td>
</tr>
<tr>
<td>2.4. Effect of SiO2 particles content on the split tensile strength</td>
<td>15</td>
</tr>
<tr>
<td>2.5. Effect of reinforcement content on the hardness of Al-SiC composites</td>
<td>16</td>
</tr>
<tr>
<td>2.6. Effect of SiC particulates on the S-N behaviour of the specimens</td>
<td>17</td>
</tr>
<tr>
<td>2.7. The variation of hardness with Al2O3 particle content and size</td>
<td>18</td>
</tr>
<tr>
<td>2.8. Component of typical sand mould (drag top view)</td>
<td>38</td>
</tr>
<tr>
<td>2.9. Component of typical sand mould (side view)</td>
<td>38</td>
</tr>
<tr>
<td>3.1. Flow chart describes the plan to carry out the thesis work</td>
<td>42</td>
</tr>
<tr>
<td>3.2. Flow chart describes the composite fabrication process</td>
<td>43</td>
</tr>
<tr>
<td>3.3. Fluka quartz container</td>
<td>44</td>
</tr>
<tr>
<td>3.4. LM6 aluminium-silicon alloy ingots</td>
<td>45</td>
</tr>
<tr>
<td>3.5. Pattern for riser, sprue, basin and runner</td>
<td>47</td>
</tr>
<tr>
<td>3.6. Pattern</td>
<td>48</td>
</tr>
<tr>
<td>3.7. Plan view of mould wall</td>
<td>49</td>
</tr>
<tr>
<td>3.8. Tensile specimens as ASTM standards</td>
<td>56</td>
</tr>
<tr>
<td>3.9. Specimen before test</td>
<td>57</td>
</tr>
<tr>
<td>3.10. Specimen after test</td>
<td>58</td>
</tr>
<tr>
<td>3.11. Instron 8500 testing machine</td>
<td>60</td>
</tr>
<tr>
<td>4.1. Stress-strain curve of quartz particulate</td>
<td>67</td>
</tr>
</tbody>
</table>
4.2. Graph plot of tensile strength VS volume fraction of SiO₂
4.3. Graph plot of young’s modulus VS volume fraction of SiO₂
4.4. Average tensile strength versus volume fraction of SiO₂
4.5. Average young modulus versus volume fraction of SiO₂
4.6. Hardness Rockwell VS quartz particulate addition
4.7. Fractograph of 5% SiO₂ particulate reinforced in SiO₂-LM6 alloy matrix composite at 250X magnification by SEM after tensile test.
4.8. Fractograph of 10% SiO₂ particulate reinforced in SiO₂-LM6 alloy matrix composite at 100X magnification by SEM after tensile test.
4.9. Fractograph of 15% SiO₂ particulate reinforced in SiO₂-LM6 alloy matrix composite at 250X magnification by SEM after tensile test.
4.10. Fractograph of 20% SiO₂ particulate reinforced in SiO₂-LM6 alloy matrix composite at 100X magnification by SEM after tensile test.
4.11. Fractograph of 25% SiO₂ particulate reinforced in SiO₂-LM6 alloy matrix composite at 250X magnification by SEM after tensile test.
LIST OF ABBREVIATIONS

ASTM – American Society for Testing and Materials

Al – Aluminum
A – length of reduce section (mm)
B – length of grip section (mm)
C – width of grip section (mm)
C – Carbon
Cu – Copper
G – gage length (mm)
L – overall length (mm)
Mn – Manganese
P – Phosphorus
R – radius of fillet (mm)
S – Sulfur
T – Ton
Si – Silicone
Zn – Zink
V – volume (cc)
W – width (mm)
m – mass (kg)
t – thickness (mm)
ρ – density (gr/cm³)
MPa – Mega Pascal
kN – kilo Newton
MMC – metal matrix composite
SEM – scanning electron microscope
SiO₂ – silicon dioxide (quartz)
LM6 – Type of aluminium
μm – micrometer

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_c</td>
<td>Volume fraction of composite (%)</td>
</tr>
<tr>
<td>v_f</td>
<td>Volume fraction of fiber (%)</td>
</tr>
<tr>
<td>v_m</td>
<td>Volume fraction of matrix (%)</td>
</tr>
<tr>
<td>ρ_c</td>
<td>Density of composite (gr/cm³)</td>
</tr>
<tr>
<td>ρ_f</td>
<td>Density of fiber (gr/cm³)</td>
</tr>
<tr>
<td>ρ_m</td>
<td>Density of matrix (gr/cm³)</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Problem statement</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Objective of research</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Scope and limitation</td>
<td>6</td>
</tr>
<tr>
<td>1.2. Thesis layout</td>
<td>7</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>2.1. General</td>
<td>8</td>
</tr>
<tr>
<td>2.2. Metal matrix composite (MMC)</td>
<td>11</td>
</tr>
<tr>
<td>2.3. Classifications of composite</td>
<td>20</td>
</tr>
<tr>
<td>2.4. Significance of composite</td>
<td>23</td>
</tr>
<tr>
<td>2.5. Matrix/matrices</td>
<td>23</td>
</tr>
<tr>
<td>2.6. Reinforce phase</td>
<td>24</td>
</tr>
<tr>
<td>2.6.1. Factor affecting reinforcement</td>
<td>24</td>
</tr>
<tr>
<td>2.6.2. Particulate reinforcement</td>
<td>26</td>
</tr>
<tr>
<td>2.7. Application of metal matrix composites</td>
<td>27</td>
</tr>
<tr>
<td>2.8. Materials selected for processing composite</td>
<td>30</td>
</tr>
<tr>
<td>2.8.1. LM6 aluminum-115 silicon alloy</td>
<td>31</td>
</tr>
<tr>
<td>2.8.2. Silicon dioxide (SiO₂)</td>
<td>34</td>
</tr>
<tr>
<td>2.8.3. Sodium silicate (CO₂ Process)</td>
<td>36</td>
</tr>
<tr>
<td>2.8.4. Pattern</td>
<td>36</td>
</tr>
<tr>
<td>2.8.9. CO₂ Sand moulds</td>
<td>37</td>
</tr>
<tr>
<td>2.9. Fracture surface morphology</td>
<td>39</td>
</tr>
<tr>
<td>2.10. Conclusion</td>
<td>39</td>
</tr>
</tbody>
</table>
3. RESEARCH METHODOLOGY

3.1. Material description for processing MMCs

3.2. Analysis procedure

3.2.1. Preparation of specimen

3.2.2. Preparation of product pattern

3.2.3(i). Procedure to make product pattern

3.2.3(ii). Preparation of pouring basin, sprue, well base, runners, ingates, and risers

3.2.3(iii). Mould wall

3.3. Preparation of molding sand mixture

3.4. Preparation of cope

3.5. Preparation of drag

3.6. Production method of metal matrix composite materials

3.6.1. Fabrication process

3.6.2. Characterization of silica

3.6.3. Melting and casting

3.7. Testing description

3.7.1. Tensile Test of the prepared samples

3.8. Testing procedure

3.9. Hardness measurement

3.10. Fracture surface analysis

3.10.1. Preparation of specimen for SEM test

4. RESULT AND DISCUSSIONS

4.1 Introduction

4.2 Tensile test observation and data generation

4.3 Hardness test

4.4 Observation and analysis of the fracture surface of the Test specimen by SEM after tensile testing

5. CONCLUSIONS AND RECOMMENDATION

5.1 Conclusions

5.2 Recommendations

REFERENCES

BIODATA OF THE AUTHOR
CHAPTER 1
INTRODUCTION

1.1 Background

Industrial technology is growing at a very rapid rate and consequently there is an increasing demand and need for new materials. The metal-non metal composites represent a class of materials which can withstand high temperature and pressure besides its resistance to radiation effects and chemical reactivity. Metal matrix composites (MMC) are composed of an element or alloy matrix in which a second phase is embedded and distributed to achieve some property improvement. Based on the size, shape and amount of the second phase, the composite properties vary. Particulate reinforced composites, often called as discontinuously reinforced metal matrix composites, constitute 5 – 20% of these new advanced materials. The microstructure of the processed composites influences and have a great effect on the mechanical properties. Generally, increasing the volume fraction of the second phase (reinforcement phase) in the matrix leads to an increased stiffness, yield strength and ultimate tensile strength. But the low ductility of particulate reinforced MMCs is the major drawback that prevents their usage as structural components in some applications [Rizkalla and Abdul.W, 1997]. Miller and Humpherys [1990] have carried out a detailed investigation on the strengthening mechanism of composites. They have found that the particle size and its volume fraction in metal matrix composites influences the generation of
dislocations due to thermal mismatch and as well as the effect influenced by the developed residual and internal stresses. The researchers have predicted that the dislocation density is directly proportional to the volume fraction and also due to the amount of mismatch. The resulting strengthening effect (quench strength) is proportional to the square root of the dislocation density. Consequently, this effect would be significant for fine particles and for higher volume fractions. Recent studies have shown that the matrix microstructure has a clear effect on the fracture details of the tested specimen.

Metal matrix composites have outstanding benefits due to the combined metallic and ceramic properties, thereby yielding improved physical and mechanical properties. Among the various types of MMCs, particulate-reinforced composites are the most versatile and economical one [Sharma et al., 1997].

During the past 40 years, materials design has shifted emphasis to pursue lightweight, environment friendliness, low cost, quality, and performance materials. Parallel to this trend, metal-matrix composites have been attracting growing interest. MMC attributes include alterations in mechanical behavior (e.g., tensile and compressive properties, creep, notch resistance, and tribology) and physical properties (e.g., intermediate density, thermal expansion, and thermal diffusivity) by the reinforced filler phase. Apart from these advantages, MMCs have limitations on thermal fatigue, thermochemical compatibility, and possess lower transverse creep resistance [Ejofor and Reddy, 1997].
Fabrication of discontinuously reinforced Al-based MMCs can be achieved by standard metallurgical processing methods like powder metallurgy, direct casting, rolling, forging and extrusion, and further the products can be shaped, machined and drilled by using conventional machining facilities. Thus, they can be made available in suitable quantities particularly for automotive applications [Seah et al., 2003].

Composite materials are characterized by good mechanical properties over a wide range of temperature. The choice of the processing method depends on the property requirements, cost factor consideration and future applications prospects [Kaczmar et al., 2000].

Composite materials with a metal or an alloy matrix can be produced either by casting or by powder metallurgy methods. Metal matrix composites (MMC) are considered as potential material candidates for a wide variety of structural application in the transportation, automobile and sport goods manufacturing industries due to the superior range of mechanical properties they possess [Hasyim et al., 2003].

According to Cok [2004], metal matrix composites (MMC) represent a new generation of engineering materials in which a strong ceramic reinforcement is incorporated into a metal matrix to improve its properties including specific strength, specific stiffness, wear resistance, corrosion resistance and elastic modulus. MMCs combine metallic properties of matrix alloys (ductility and
toughness) with ceramic properties of reinforcements (high strength and high modulus), leads to greater strength in shear and compression and higher service-temperature capabilities. Thus, they have significant scientific, technological and commercial importance. During the last decade, because of their improved properties, MMC are being used extensively for high performance applications such as in aircraft engines and more recently in the automotive industries.

Aluminium oxide and silicon carbide powders in the form of fibers and particulates are commonly used as reinforcements in MMCs and the addition of these reinforcements to aluminum alloys has been the subject of a considerable amount of research work. Aluminium oxide and silicon carbide reinforced aluminum alloy matrix composites are applied in the automotive and aircraft industries as engine pistons and cylinder heads, where the tribological properties of these material are considered important. Therefore, the development of aluminum matrix composites is receiving considerable emphasis in meeting the requirements of various industries. Incorporation of hard second phase particles in the alloy matrices to produce MMCs has also been reported to be more beneficial and economical [Kok, 2004] due to its high specific strength and corrosion resistance properties. Metal matrix composites are materials that are attractive for a large range of engineering applications.
1.2. Problem statement

In the past, various studies have been carried out on metal matrix composites. SiC, TiC, TaC, WC and B4C are the most commonly used particulates to reinforce metal or alloy matrix or matrices like aluminium or iron, while the study of silicon dioxide reinforcement in LM6 alloy is still rare and scarce. However, very limited studies have been reported and so the information and the data available on the mechanical properties and fracture surface analysis is scarce and hence makes this study a significant one. In this investigation quartz particulate reinforced LM6 alloy matrix composites test samples fabricated and processed by casting method are selected. So in this research work the parameter of different percentage of SiO2 particulate addition in the LM6 alloy matrix is examined to study the mechanical behavior and fracture surface characteristic used tensile testing of the processed specimens.

1.3. Research objectives

The overall objective of this experimental investigation is to study the technical viability of SiO2 particulate reinforced LM6 aluminium alloy matrix composites and the specific objectives are as follows:

1. To determine the ultimate tensile strength and modulus of elasticity and hardness of SiO2 particulate reinforced LM6 alloy matrix composites.
2. To study the morphological features and characteristics of the
fracture surfaces of the quartz reinforced LM6 alloy composites
subjected to tensile testing by using scanning electron microscope
(SEM).

1.4. Scope and limitation

In this project, LM6 alloy is used as a matrix material due to its better fluidity
and castability. It contains 11-13% silicon as a major alloying element in the
aluminium metal. It is an eutectic alloy having the lowest melting point as per
the aluminium-silicon equilibrium phase diagram and available at reduced cost
in the market. CO₂ process is employed to produce sand moulds for casting
SiO₂-particulate reinforced LM6 alloy composites. The advantages of CO₂ sand
cast products possess good dampening properties, uniform strength in all
directions and cheaper when compared to other manufacturing processes such
as forging, welding, and rolling.

In this study, tensile testing and scanning electron microscopy are employed to
evaluate the maximum load, young’s modulus, tensile strength and to
c characterize the morphological features of the fracture surfaces in silicon
dioxide (quartz) - particulate reinforced LM6 alloy composites after the tensile
testing.
1.5. Thesis layout

This thesis has been structured into 5 chapters. The first one is the introduction chapter and chapter 2 presents a review of literature that relates to the investigation on the mechanical behavior of SiO$_2$-particle reinforced LM6 alloy matrix composites. Chapter 3 presents the description of research methodology. The experimental results on tensile testing of the processed specimen and the fracture surface characteristic features after the tensile testing are presented in chapter 4. For the tensile test and SEM analysis an overall discussion is made and explained in chapter 4. The final conclusions of this study are mentioned in chapter 5 precisely.