UNIVERSITI PUTRA MALAYSIA

IN VITRO ANTICANCER PROPERTIES OF LINAMARIN CONTROLLED RELEASE FROM BIODEGRADABLE POLY-LACTIC CO-GLYCOLIC ACID NANOPARTICLE

WEDAD ASHOUR AL FOURJANI.

FK 2005 12
IN VITRO ANTICANCER PROPERTIES OF LINAMARIN CONTROLLED RELEASE FROM BIODEGRADABLE POLY-LACTIC CO-GLYCOLIC ACID NANOPARTICLE

By

WEDAD ASHOUR AL FOURJANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Master of Science

November 2005
DEDICATIONS

To my husband and my son Abdo
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

IN VITRO ANTICANCER PROPERTIES OF LINAMARIN CONTROLLED RELEASE FROM BIODEGRADABLE POLY-LACTIC CO-GLYCOLIC ACID NANOPARTICLE

By

WEDAD ASHOUR ALFOURJANI

November 2005

Chairman: Norhafizah Abdullah, PhD

Faculty : Engineering

There are many interests in finding new chemotherapeutic agents for cancer. The current work involved screening of linamarin as the therapeutic agent on different cancer cells, as no such study has been performed previously. Improved bioavailability and delivery of the linamarin to the targeted tumour cells can be engineered by proper selection of its carrier. There are many advantages of choosing biodegradable nanoparticles as a drug carrier. These include an improved bioavailability and efficacy of the drug. It also offers a controlled release mechanism in which the activity of the drug can be prolonged at the affected sites. Besides, the biodegradability character of the carrier means these particles are easily dissolved in the system without exerting any side effects to the body. The
present study investigated fabrication of linamarin encapsulation into biodegradable nanoparticles to kill cancer cells.

The present study was initiated with an investigation of the toxic effect of linamarin on cancer cells and their cell cycles. The *in vitro* study on the effect of linamarin was performed on two tumour cell lines, HeLa (cervical tumour cell line) and CAOV3 (ovarian tumour cell line). The cytotoxicity of linamarin was determined by the MTT assay. Both cell lines showed significant cell death when exposed to linamarin with the IC50 values well within the efficacious limit (IC50 of 30 mg/ml and 58 mg/ml for HeLa and CAOV3 cell lines, respectively, when exposed to pure linamarin). This result indicated that linamarin has the potential as a drug candidate for cancer treatment.

The subsequent cell cycle analysis performed by flow cytometry to determine the arrested point of linamarin within the cell cycle. Results showed significant effect of linamarin on the G1 phase of the cell cycle. In other words, a significant number of cells were being arrested in the G1 phase. However, no significant effect was observed on the S and G2-M stage of the cell cycle stage after treatment with the linamarin for 24 hours.

The second part of the study was on fabrication of biodegradable linamarin loaded nanoparticles. Poly (lactic-co-glycolic acid) (PLGA) was chosen as the polymeric material of the nanoparticles. The water-in-oil-in-water emulsification process was the method of choice for the encapsulation of linamarin inside polymeric particles. The linamarin nanoparticles based on two different mole fraction of PLGA copolymer (50/50 and 85/50 of lactic acid/glycolic acid, respectively) were successfully fabricated using water-in-oil-in-water double emulsion extraction/evaporation technique. The SEM
analysis on the morphologies of the nanoparticles showed the particles are spherical in shape with porous surface structure and well within nano-scale in size.

A preliminary investigation on \textit{in vitro} drug (linamarin) release was also carried out. The \textit{in vitro} drug (linamarin) release was characterised by an initial burst and incomplete dissolution of the drug. When decreasing the polymer/drug ratio, the release appeared more controlled and prolonged up to 8hr. It can be concluded that nanoparticles prepared by water-in-oil-in-water emulsification followed by solvent evaporation is a good potential for a controlled released-drug carriers for linamarin.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIFAT-SIFAT ANTIKANSER LINAMARIN SECARA IN-VITRO DAN PELEPASAN TERKAWALNYA DARIPADA NANOZARA ASID PLGA BOLEH BIOROSOT

Oleh

WEDAD ASHOUR AL FOURJANI

November 2005

Pengerusi: Norhasfizah Abdullah, PhD

Fakulti : Kejuruteraan

Kajian ini dimulakan dengan menyiasat kesan ketoksikan linamarin terhadap sel-sel kanser serta kitaran selnya. Pengajian kesan linamarin di luar tubuh badan dilakukan ke atas dua jujukan sel tumor, iaitu HeLa (jujukan sel tumor servik) dan CAOV3 (jujukan sel tumor ovari). Sitotoksiksiti linamarin ditentukan dengan asei MTT. Kedua-dua jenis jujukan sel menunjukkan kematian sel yang nyata apabila didedahkan kepada linamarin pada nilai IC₅₀ yang berada di dalam julat keberkesanan. (Nilai IC₅₀ untuk HeLa adalah 30 mg/ml dan 58 mg/ml untuk sel CAOV3 apabila kedua-dua sel ini didedahkan kepada linamarin yang tulen. Keputusan ini menunjukkan bahawa linamarin mempunyai potensi sebagai calon ubat dalam rawatan kanser. Kitaran sel yang kemudiannya dianalisisaskan dengan flow sitometri menunjukkan kesan linamarin yang nyata pada fasa G₁ kitaran sel. Ini bermakna terdapatnya nombor sel yang nyata yang telah disekat pada fasa G₁. Walabagaimanapun, tiada kesan yang nyata yang diperhatikan pada fasa S dan G₂-M kitaran sel selepas dirawatkan dengan linamarin selama 24 jam.

dengan SEM menunjukkan bahawa partikel-partikel yang dihasilkan adalah dalam bentuk sfera dengan struktur permukaan yang berliang dan saiz yang berada dalam skala nano.

ACKNOWLEDGEMENTS

I wish to express my profound gratitude to Dr. Norhafizah who thoroughly supervised this work with great interest and enthusiasm. The timely support, comments and evaluation allowed me to complete the research project on schedule that played a huge part in making it possible for me to pursue the dream of obtaining a master degree. Special thanks to Associate Professor Dr. Rozita Rosli, for providing the assistance in the cytotoxicity experiments. In this regard, I owe my most sincere thankfulness to my other members of my dissertation committee respectively Assoc. Prof. Dr. Robiah Yunus and Dr. Nashiru Billa, for sharing their knowledge and wisdom with me. Not to forget Dr. Iuky Sunny who supervised me in the first and second semester.

My parents: Mr. and Mrs. M. Al Fourjani for their prayers love. I thank my sisters; Aisha, basma, and my entire family in Libya for their unceasing mails.

At last, but definitely not the least, I would like to give my special thanks to a very special person in my life-my husband, Kadri Lyeaas and my son Abdo. I am most grateful to god for the precious gift. Kadri who have been a solid support and continuous source of encouragement. He is not only very understanding and supportive to my studies, but also shows me what life is really about besides books, research and internet. More importantly, he helps me how to face difficulties and cherish life. I am thankful that I have him in my life.

Thank you!!
I certify that an examination committee met on 17th October 2005 to conduct the final examination of Wedad Ashour Al Fourjani on her Master of Science thesis entitled “In Vitro Anticancer Properties of Linamarin Controlled Release From Biodegradable Poly-Llactic Co-Glycolic Acid Nanoparticle” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the examination Committee are as follows:

Tey Beng Ti, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Suraya Abdul Rashid, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Ling Tau Chuan, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Roji Sarmidi, PhD
Professor
Faculty of Chemical and Natural Resource Engineering
Universiti Teknologi Malaysia
(External Examiner)

\[\text{Signature}\]

ZAKARIAH ABDUL RASHID, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 DEC 2005
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Master of Science. The member of the Supervisory Committee is as follows:

Norhafizah Abdullah, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Robiah Yunus, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Rozita Rosli, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Nashiru Billa, PhD
Lecturer
International Medical University
Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate studies
Universiti Putra Malaysia

Date: 12 JAN 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

WEDAD ASHOUR AL FORJANI
Date: 24/12/2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Introduction 1
 1.2 Problem Statement 3
 1.3 Objectives and Strategies of The Thesis 5

2. **LITERATURE REVIEW**
 2.1. Linamarin
 2.1.1. Linamarin as the Toxic Compound in Cassava 7
 2.1.2. Potential Application of Linamarin 8
 2.2. Cell cycle 11
 2.3. Introduction to control release 13
 2.4. Polymer system in controlled release 15
 2.4.1. Polymeric matrices 16
 2.4.1.1. Water soluble polymer 16
 2.4.1.2. Biodegradable polymer 17
 2.4.1.3. Non biodegradable polymer 18
 2.4.2. Drug Released Mechanism in Polymeric System 19
 2.5. Controlled drug delivery based on biodegradable polymer 23
 2.5.1. Physical and chemical properties of biodegradable Polymers 24
 2.5.2. Degradation and erosion of biodegradable system 27
 2.5.3. Modeling of biodegradable system 31
 2.5.4. Nanoparticles 33
 2.5.5. Primary method for nanoparticles preparation 34
 2.5.5.1. Emulsion-Solvent Evaporation/Extraction Method 35

xiii
2.5.5.2. Spontaneous Emulsification/ Solvent Diffusion Method
2.5.5.3. Salting Out /Emulsification Diffusion Method
2.5.5.4. Nano -Precipitation Method
2.5.5.5. Production of Nanoparticles Using Supercritical Fluid Technology
2.5.5.6 Polymerization Method
2.5.6. Factors Affecting Nanoparticles Production
2.5.7. Solvent Removal by Lyophilization (Freeze drying)

3 MATERIALS AND METHODS

3.1 Materials
3.1.1. Chemical and media
3.1.2. Equipments
3.2 Methods
3.2.1 Cell culture
3.2.2 MTT assay
3.2.2.1. Statistical Analysis for MTT Assay Study
3.2.3 Flow Cytometry
3.2.3.1. Flow cytometry
3.2.3.2. Preparation of the cell for flow cytometer analysis
3.2.3.3. Staining
3.2.3.4 Statistical analysis for flow cytometry study
3.2.4 Preparation of linamarin loaded nanoparticles
3.2.4.1 Poly vinyl alcohol (PVA) solution
3.2.4.2 Single emulsion formulation
3.2.4.3 Double emulsion formulation
3.2.4.4 Nano-emulsification step
3.2.5 Scanning Electron Microscope (S.E.M) analysis
3.2.6. Nanoparticles drug loading content and entrapment Efficiency
3.2.7 In vitro drug release study

4 RESULTS AND DISCUSSION

4.1. Cytotoxicity Study of Linamarin on Cancer Cells
4.2. The Effect of Drugs on Cell cycle by Flow Cytometry Study
4.2.1. The Effect of Tamoxifen on the Cell Cycle of Hela Cells
4.2.1.1. The effect on G1 phase
4.2.1.2. The effect on S-phase
4.2.1.3. The effect on G2-M stage
4.2.2. The Effect of Pure linamarin on The Cell Cycle of HeLa and CAOV3 cell lines
4.2.2.1. The effect on G1-phase
4.2.2.2. The effect on S-Phase
4.2.2.3. The effect on G2-M Phase

4.2.3 The Effect of Crude linamarin on The Cell Cycle of HeLa and CAOV3 cell lines
 4.2.3.1. The effect on G1-phase
 4.2.3.2. The effect on S-Phase
 4.2.3.3. The effect on G2-M Phase

4.3. Production of Linamarin loaded Biodegradable Nanoparticles
 4.3.1. Scanning Electron Microscope (S.E.M) analysis
 4.3.2. Entrapment efficiency of Linamarin in biodegradable PLGA Nano-Particles
 4.3.3. Preliminary In vitro Drug Release Study

5 GENERAL CONCLUSION AND FUTURE WORK
 5.1 Conclusion
 5.2 Future development
 5.2.1. Linamarin toxicity study on other cancer cell lines
 5.2.2. Nanoparticle fabrication
 5.2.3. Drug release study

REFERENCES
APPENDICES
BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Examples of Water-Soluble Polymers used as Drug Delivery Matrices</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Examples of Biodegradable Polymers Used in Drug Delivery</td>
<td>18</td>
</tr>
<tr>
<td>2.3. Examples of Non biodegradable Polymers Used in Drug Delivery</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Characteristics of lactide/glycolide polyesters</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Summary of methods used for preparation of polymeric nanoparticles.</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Comparison of particles diameter for polymeric nanoparticles.</td>
<td>46</td>
</tr>
<tr>
<td>4.1 IC50 result of the MTT assay.</td>
<td>60</td>
</tr>
<tr>
<td>4.2 The effect of the polymer and the drug on the entrapment efficiency %</td>
<td>92</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structures of linamarin (I), lotaustraloin (II) and acetone cyanohydrin (III)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Linamarin biosynthesis and breakdown pathway in cassava</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Cell cycle diagram</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Plasma concentration of drug as a function of time after administration.</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic of the drug delivery based on the different mechanism.</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Structure of lactic/glycolic acid and poly lactic-co-glycol ide (PLGA)</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>The degradation of PLGA copolymer to form lactic and glycolic acid</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic of the surface erosion and bulk erosion.</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Particle preparation methods via solvent evaporation method (single and double emulsion)</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic diagram of the supercritical anti solvent (SAS) method</td>
<td>40</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic representation for the production of poly (alkylcyanoacrylate) nanoparticles by anion polymerization</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>The effect of different drug on HeLa cell viability.</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>The effect of pure linamarin on HeLa cells</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of crude linamarin on HeLa cells</td>
<td>61</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of tamoxifen on the HeLa cell as drug control.</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of tamoxifen on CAOV3 cells as a drug control.</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>The effect of pure linamarin on CAOV3 cells</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>The effect of crude linamarin on CAOV3 cells</td>
<td>63</td>
</tr>
<tr>
<td>4.8</td>
<td>The effect of pure linamarin with linamarase on HeLa cells.</td>
<td>64</td>
</tr>
</tbody>
</table>
4.9. The effect of pure linamarin with linamarase on CAOV3 cells

4.10. Histographs illustrating the 3 phases of cell cycles in HeLa and CAOV3, namely M1 (G1 phase), M2 (S phase) and M3 (G2-M phase).

4.11. Flow cytometry histograms of cell cycle analysis. HeLa cells were exposed to tamoxifen at different concentration (3, 6 and 12 µg/ml) for 24 hr.

4.12. Histogram showing HeLa cells treated with different concentration of tamoxifen for 24 hours.

4.13. Flow cytometry histogram of cell cycle analysis. HeLa cells exposed to pure linamarin for 24 hours.

4.15. Histogram showing HeLa cell treated with pure linamarin for 24 hours.

4.16. Histogram showing Caov-3 cell treated with pure linamarin for 24 hours.

4.18. Flow cytometry histograms of cell cycle analysis on HeLa cells exposed to crude linamarin for 24 hr.

4.19. Histogram showing HeLa cells treated with crude linamarin for 24 hours.

4.20. Histogram showing Caov-3 cell treated with crude linamarin for 24 hours.

4.21. SEM micrograph showing linamarin loaded PLGA nanoparticles.

4.22. SEM micrographs of nanoparticles showing the shape and surface characteristic (a) PLGA 50/50 (b) PLGA 85/15.

4.23. SEM micrograph of PLGA 50/50 nanoparticles loaded with 5mg linamarin.

4.24. SEM micrographs of PLGA 50/50 nanoparticles loaded with 10 mg linamarin.

4.25. SEM micrographs of PLGA 85/15 nanoparticles loaded with 5mg linamarin.
4.26 SEM micrograph of PLGA 85/15 nanoparticles loaded with 10 mg linamarin.

4.27 Release profiles of linamarin (5 mg) from different molar ratio of PLGA nanoparticles.

4.28 Release profiles of linamarin (10 mg) from different molar ratio of PLGA nanoparticles.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA</td>
<td>alkyl cyanocrylate</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>CN⁻</td>
<td>cyanide ion</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DMAB</td>
<td>didodecyl dimethyl ammonium bromides</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>dideoxyribonucleic acid</td>
</tr>
<tr>
<td>DSC</td>
<td>differential scanning calorimetry</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GAS</td>
<td>gas anti solvent</td>
</tr>
<tr>
<td>HCN</td>
<td>hydrogen cyanide</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>MPS</td>
<td>mononuclear and phagocytic system</td>
</tr>
<tr>
<td>MTT</td>
<td>3-4, 5-dimethylthizol-2-yl)-2-5-diphenyl tetrazolium bromide solution</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PACA</td>
<td>Poly alkyl cyanorylate</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffer saline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PDLLA</td>
<td>poly D, L lactic acid</td>
</tr>
<tr>
<td>PGA</td>
<td>poly glycolide</td>
</tr>
<tr>
<td>PI</td>
<td>propidium iodide</td>
</tr>
<tr>
<td>PLA</td>
<td>poly lactide</td>
</tr>
<tr>
<td>PLGA</td>
<td>poly lactic glycolic acid</td>
</tr>
<tr>
<td>PLLA</td>
<td>poly L-lactic acid</td>
</tr>
<tr>
<td>PVA</td>
<td>polyvinyl alcohol</td>
</tr>
<tr>
<td>RESS</td>
<td>rapid expansion of supercritical</td>
</tr>
<tr>
<td>RPMI media</td>
<td>Roswell Park Memorial Institutes media</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SAS</td>
<td>supercritical anti solvent</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>W1/O</td>
<td>water-in-oil</td>
</tr>
<tr>
<td>W1/O/W2</td>
<td>water-in-oil- in-water</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Introduction
The drug delivery system is a system which delivers or carries the drug to the infected sites. The system is characterised by its ability to incorporate drugs without damaging them, long in vivo stability, its tuneable release kinetics and targeting to specific organs and tissues. This tuneable release kinetics is a characteristic for a controlled drug delivery mechanism. The controlled drug delivery offers many advantages over conventional dosage forms, including improved efficacy, reduced toxicity, improved patient compliance, and cost effective therapeutic treatment. In particular, the controlled release mechanism is strongly required for unconventional drugs, such as proteins and oligopeptides.

In recent years, there has been significant effort to develop nanotechnology for drug delivery since it offers a suitable means for delivering small molecular weight drugs, as well as macromolecules such as protein, peptide or genes. Most of the works focus on formulation of therapeutic agents in biocompatible nano-composites such as nanoparticles, nanocapsules, micellar system, and conjugates. These systems are often polymeric based matrix and submicron in size.

These nanotechnology systems can be used to provide targeted delivery of drugs, to improve the oral bioavailability and to sustain drug effect in cancer tissues. They can
also be used to solubilize drugs for intravascular delivery and to improve the stability of therapeutic agents against enzymatic degradation. Much work in the past found that nanoparticulates drug carrier made of polymer appear to be more stable when in contact with biological fluids than other colloidal drug carriers (Kreuter et al., 1988; Zambaux et al., 1998). They also have been proposed as drug delivery systems for different routes of administration and for different types of active ingredients such as anticancer agents (Feng et al., 2003 and Fonseca et al., 2002), anti-inflammatory compounds (Chacon et al., 1999), oligonucleotides (Lambert et al., 2001; Ulbrich et al., 2004) and peptides (Lemoine and Preat, 1998).

Polymers can be used as a base matrix for nanoparticles. Polymeric nanoparticles generally vary in size from 10 to 1000 nm. The fabrication of polymeric nanoparticles is via dissolution, entrapment, encapsulation or attachment of the drug to a polymer matrix. The polymers used to make the nanoparticles for administration into the human body are significantly limited to a few types of polymers due to their biocompatibility and biodegradation although various polymers can be employed to make nanoparticles.

There has been intensive research in the development of nanoparticles of biodegradable polymers as an effective drug delivery system for medical practice, especially for chemotherapy and gene delivery. Progress in nanoparticles technology, material science of biodegradable polymers and cellular and molecular physiology and pathology have contributed to the advancements in chemotherapy and gene therapy of cancer and other
disease with polymeric nanoparticles been considered as promising carriers for the therapeutic agent.

Nanoparticulate delivery systems, based on poly (lactic-co-glycolic acid) (PLGA) polymers have been studied extensively for many years (Song.C.X, 1997). PLGA (lactic-co-glycolic acid) and its homo- or copolymers are the most widely used biodegradable polymers for fabricating nanoparticles. PLGA polymers have the advantage of being well characterized and have been commercially used as a microparticulate drug delivery systems. They are biocompatible, biodegradable and bioresorbable.

1.2. Problem Statement

Chemotherapy is a complicated procedure in which many factors are involved in determining its success or failure. It carries a high risk due to drug toxicity and usually the more effective drugs tend to be more toxic. Problems related to drug side effects still exist even for successful chemotherapy, with patients not only have to tolerate the severe side effects but also sacrifice their quality of life. The effectiveness of chemotherapy depends on many factors, including the drug (s) used, the condition of the patient, the dosage and its form and schedule and others.

Most anticancer drugs are highly hydrophobic, and hence are not soluble in water and most pharmaceutical solvents. Adjuvants have to be used for the clinical administration of many anticancer drugs and this may cause serious side effects, some of which are life threatening. Development of effective carriers with little side effects for anticancer