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A basic requirement in the design of a trickle irrigation system is to obtain more 

information about the shape and size of the wetted soil zone. This will ensure precise 

placement of water and nutrients in the active root zone to meet the requirements of 

precision farming. A series of laboratory and field experiments were conducted to 

determine water and solute distribution pattern in soil under point source trickle 

irrigation. Three types of experiments were conducted. The focus of the first type of 

experiment was to study the effect of water application rate and the amount of water on 

water movement in the lateral and vertical direction. River sand and sandy loam soil 

were used as the media in a plexiglass container. These experiments were conducted 

under laboratory conditions where the application rates of 0.75 and 3.4 I/h were used for 

river sand soil while 1 and 3.0 I/h were used for sandy loam soil. The second type of 

experiments was conducted on river sand in the laboratory using a wooden box. The 

purpose of this experiment was to study the effect of application rate and amount of 

irrigation water on the surface wetted radius. Application rates of 3, 5.5 and 7 I/h were 

used. The third type of experiment was conducted under field conditions. The 



experiments were designed for field evaluation of water and solute movement from a 

point source. Sandy and sandy loam soils were selected for these experiments and the 

application rates varied from 1.5 to 6 Ilh. The results fiom the experiments revealed that 

for all soil types, lateral movement of the wetting front and the surface wetted radius as 

measured at the soil surface approached a limit with elapsed time. A linear relationship 

was found between vertical wetting front advance and the square root of elapsed time. 

The results obtained fiom both plexi glass and wooden box experiment showed that the 

water application rates caused a notable effect on the surface wetted radius, where 

increase in the application rates contributed to an increase in the surface wetted radius. 

On the other hand the statistical analysis of the field experiment results showed 

insignificant effect of the application rates on the surface wetted radius. Increase in the 

discharge rate caused a decrease in the vertical advance of the wetting front for both 

sandy and sandy loam soils under field conditions, and sandy loam soil in the plexiglass 

experiments. The maximum volumetric moisture content after irrigation was found in 

the region just below the irrigation source. The statistical analysis of moisture 

distribution data under field conditions showed insignificant effect of water application 

rate on the water content distribution within the boundary of 17.5 and 27.5 cm in radial 

and vertical distance, respectively. The patterns of the chloride concentration 

distribution were similar to those for moisture content distribution. The effect of inlet 

chloride concentration on the distribution of chloride concentration was significant in 

both soils. The greater the concentration at the inlet, the higher the chloride 

concentration in the soil. For both types of soil, most of the treatments indicated 

insignificant effect of application rate on the chloride distribution. Two simple models 

based on the average change in volumetric water content (AO), total volume of water 



Pt WUS I'AKAAN SULTAN A E U L  SAMAD 

applied (V,), application rate (q,) and the saturated hydraulic conductivity (ks) were 

developed to determine the surface wetted radius (r) and vertical advance of the wetting 

0.26 -0.03 -0 03 front (z) produced from point source trickle irrigation, r= ~ 0 - ~ - ~ ~  V, q, ks . and 

z= 80-0.38 0.36 -0.1 0 19 V, q, ks . . These models were verified with the data from this study 

and other published experiments under different conditions. The results obtained from 

both types of data improved the capability of using these models for designing a trickle 

irrigation system. In this study, Hydrus-2D model was used to simulate water and solute 

distribution under point source trickle irrigation. Good agreements were found between 

simulated and experimental results regarding location of the wetting front, water 

distribution and solute concentration under different application rates. 
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Keperluan asas dalam rekabentuk sistem pengairan cucur adalah untuk mendapat lebih banyak 

maklumat tentang bentuk dan saiz kawasan tanah yang dibasahi. Ini memastikan ketepatan 

pemberian air dan baja di ladang bagi memenuhi keperluan pertanian presis. Kajian di makmal 

dan di ladang telah dilakukan bagi menentukan bentuk taburan air dan solut dalam tanah di 

bawah pengairan cucur sumber titik. Tiga jenis kajian telah dilakukan. Tumpuan bagi kajian 

pertama adalah untuk mengkaji kesan kadar pembubuhan air dan jumlah air bagi gerakan air 

secara mendatar dan menegak. Pasir sungai dan tanah lom berpasir telah digunakan sebagai 

media dalam bekas plexiglass. Kajian ini telah dilakukan di dalam makrnal yang mana kadar 

pengairan 0.75 dan 3.4 l/j telah diberi bagi pasir sungai, sementara kadar 1.0 dan 3.0 I/j telah 

diguna bagi tanah lom berpasir. Kajian kedua telah dilakukan bagi pasir sungai di makmal 

dengan menggunakan bekas kotak kayu. Tujuan kajian ini adalah untuk mengkaji kesan kadar 

pembubuhan dan jumlah air pengairan keatas jarak lingkungan permukaan yang dibasahi. Kadar 

pembubuhan 3, 5.5 dan 7 I/j telah digunakan. Kajian yang ketiga telah dilakukan di ladang. 

Kajian direka untuk penilaian di ladang bagi pergerakan air dari sumber titik. Jenis tanah 
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dilakukan di ladang. Kajian direka untuk penilaian di ladang bagi pergerakan air dari 

sumber titik. Jenis tanah berpasir dan lom berpasir telah dipilih bagi semua kajian ini 

dan kadar pembubuhan 1.5 hingga ke 6 l/j telah digunakan. Keputusan dari semua kajian 

tersebut di atas menunjukkan bahawa bagi semua jenis tanah, garisan basah dan jarak 

lingkungan permukaan yang dibasahi bagi gerakan mendatar yang diukur di permukaan 

tanah adalah terhad dengan masa yang berlalu. Satu hubungkait secara lelurns telah 

diperolehi di antara garisan basah yang tegak dan masa ber lalu berkuasa seperdua. 

Keputusan yang terdapat dari kajian plexiglass dan kotak kayu menunjukkan bahawa 

kadar pembubuhan air menyebabkan kesan yang jelas ke atas jarak lingkungan 

permukaan yang dibasahi yang mana peningkatan kadar pembubuhan melibatkan 

peningkatan jarak lingkungan permukaan yang dibasahi. Dalam ha1 yang sama, 

keputusan analisis statistik bagi kajian di ladang menunjukkan kesan yang penting bagi 

kadar pembubuhan ke atas jarak lingkungan permukaan yang dibasahi. Peningkatan 

kadar luahan menyebabkan kekurangan pergerakan menegak bagi kedua-dua jenis tanah 

berpasir dan lom berpasir di ladang, dan jenis tanah lorn berpasir bagi kajian plexiglass. 

Kelembapan isipadu yang maksimum selepas pengairan terdapat dibahagian pemancar 

pengairan cucur. Analisis statistik bagi taburan lembapan di ladang menunjukkan kesan 

yang penting bagi kadar pembubuhan air ke atas taburan lembapan dalam jar& 

lingkungan sempadan 17.5 hingga 27.5 sm masing-masing bagi jarak lingkungan dan 

jarak tegak.. Bentuk taburan klorida adalah sama dengan taburan lembapan. Kesan 

klorida yang pekat di alur masuk ke atas taburan klorida yang pekat adalah penting bagi 

kedua-dua jenis tanah. Kepekatan lebih di alur masuk menghasilkan klorida pekat yang 

tinggi di dalam tanah. Bagi kedua-dua jenis tanah, kebanyakan rawatan menunjukkan 

kesan yang penting bagi kadar pembubuhan ke atas taburan klorida dalam bentuk 
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kepekatan tanpa dimensi. Dua jenis model mudah yang berdasarkan purata pertukaran 

kandungan lembapan isipadu (AO), jurnlah air yang diberi (V,), kadar pembubuhan (q,) 

dan keberkondukan hidraul tepu (k,) telah dibangunkan untuk menentukan jar& 

lingkungan permukaan yang dibasahi (r) dan garis basah menegah (2) yang telah dihasil 

dari pengairan cucur sumber titik, r = A O - ~ . ~ ~ V W O  2 6 q ~ - 0  03ks-0.03 d m  z = A@' 3 8 ~ ~ 0  3 6 q ~ -  

O 'ksO 19. Model-model ini telah dibuat pengesahan dengan data dari kajian ini dan kajian 

lain yang telah diterbitkan dalam keadaan yang berlainan. Keputusan yang dapat bagi 

kedua-dua jenis data mendorong keupayaan kegunaan kedua-dua model bagi rekabentuk 

sistem pengairan cucur. Dalam kajian ini, model Hydrus-2D telah digunakan untuk 

simulasi taburan air dan solut di bawah pengairan cucur sumber titik. Persetujuan yang 

baik telah diperolehi di antara keputusan simulasi dan kajian berkenaan lokasi garisan 

basah, taburan air dan kepekatan dengan kadar pembubuhan yang pembubuhan 

. . . 
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Observed and predicted moisture distribution under application 
rate of 2.6 I/h for sandy loam soil, elapsed time 400min 

Observed and predicted moisture distribution under application 4.161 
rate of 3.0 Ik for sandy loam soil, elapsed time 350min 

Observed and predicted moisture distribution under application 4.161 
rate of 4.0 I/h for sandy loam soil, elapsed time 360min 

Observed and predicted chloride distribution under application 4.168 
rate of 1.5 I/h for sandy soil 

Observed and predicted chloride distribution under application 4.169 
rate of 2.0 I/h for sandy soil 

Observed and predicted chloride distribution under application 4.170 
rate of 2.5 Ik for sandy soil 

Observed and predicted chloride distribution under application 4.17 1 
rate of 2.7 I/h for sandy soil 

Observed and predicted chloride distribution under application 4.72 
rate of 3.5 I/h for sandy soil 
Observed and predicted chloride distribution under application 4.173 
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