

UNIVERSITI PUTRA MALAYSIA

STRUCTURAL BEHAVIOUR OF INTERLOCKING HOLLOW BLOCK PANEL WITH STIFFENER SUBJECTED TO AXIAL AND ECCENTRIC LOAD

FARES A. SHEHAB.

FK 2005 8

STRUCTURAL BEHAVIOUR OF INTERLOCKING HOLLOW BLOCK PANEL WITH STIFFENER SUBJECTED TO AXIAL AND ECCENTRIC LOAD

By

FARES A. SHEHAB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Partial Fulfillment the Requirement for the Degree Of Master Of Science

October 2005

Dedicated To My Parents, Brother and Sister

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

STRUCTURAL BEHAVIOUR OF INTERLOCKING HOLLOW BLOCK PANEL WITH STIFFENER SUBJECTED TO AXIAL AND ECCENTRIC LOAD

By

FARES A. SHEHAB

October 2005

Chairman: Associate Professor Waleed A. M. Thanoon, PhD

Faculty: Engineering

The search for more rapid construction that need ordinary labor has led to the development of interlocking masonry system in which the walls can be assembled without using any mortar layer. The assembled hollow blocks in the wall provide continuous hollow voids, which can be used to host stiffeners in vertical and horizontal directions to enhance the integrity of the wall. However the effects of reinforced concrete stiffeners on the structural response of the interlocking walls are still not known and require further investigation.

This research is mainly focused on the structural behavior of interlocking hollow block walls with stiffener constructed using PUTRA interlocking hollow block under axial and eccentric vertical load.

Experimental program includes testing of individual block units, interlocking prism and full scale interlocking walls. Since the compressive capacity of a wall is defined in terms of compressive strength of the block unit used to construct the wall, the compressive strength of different individual block unit was evaluated by testing 40 block units for each type of block used to assemble the wall stretcher ,half and corner block units.

Furthermore three course grouted prisms were tested and compared with un-grouted prisms to explore the effect of grout on prism strength; these results were compared with results presented by other researchers.

Five wall specimens of 1.2 m width and 3.0 m height were tested under the effect of axial and eccentric vertical loads considering different eccentricity of 40 and 55 mm. The research aims to investigate the effect of two different stiffeners layout on their structural response compared to the walls without stiffener highlighting the difference between interlocking walls with stiffener and conventional bonded masonry walls using mortar layers. In the first layout, the reinforced concrete (R.C.) stiffeners were located at the perimeter of wall, while in the second layout the stiffeners were located at wall perimeter as well as horizontal stiffeners at mid height of wall. The structural responses of tested panels were monitored in terms of wall efficiency, deformation characteristics strain distribution reduction in wall capacity due to effect of eccentric load cracking and failure mode.

The testing results show that the presence of stiffeners has improved the behavior of tested panels by increasing the load carrying capacity of stiffened panels by 15% to 30% compared to un-stiffened specimens. Furthermore the horizontal stiffener located at mid height of wall plays important roles in the capacity of wall and its failure mode.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk memperoleh ijazah Master Sains

KELAKUAN BERSTRUKTUR PANEL BLOK BERONGGA KAIT PANCA TERKAKU DI BAWAH BEBAN PAKSI DAN EKSENTRIK

Oleh

FARES A. SHEHAB

October 2005

Pengerusi: Professor Madya Waleed A. Thanoon, PhD

Fakulti: Kejuruteraan

Pencarian ke arah pembinaan lebih pantas yang bergantung pada kerja tangan yang berkurangan telah menghasilkan pembinaan sistem masonri kait panca yang melibatkan pemasangan dinding tanpa menggunakan sebarang lapisan mortar. Blok geronggang yang terpasang pada dinding menyediakan ruang kosong berongga yang berterusan yang dapat digunakan sebagai tempat pengikat kestabilan (pengkaku) arah menegak dan melintang untuk menambah kestabilan dan integriti dinding. Walau bagaimanapun kesan pengkaku konkrit diperkuat terhadap gerak balas struktur dinding kait panca masih tidak diketahui dan memerlukan penyiasatan lanjut.

Penyelidikan ini terutamanya berfokus pada tingkah laku struktur dinding blok berongga kait panca yang dibina dengan menggunakan blok berongga kait panca Putra di bawah beban tegak paksi eksentrik.

Program eksperimen termasuk pengujian unit blok individu prisma kait panca dan dinding kait panca skala penuh. Oleh kerana keupayaan kompresif sebuah dinding itu didefinisikan dari segi kekuatan kompresif unit blok yang digunakan untuk membina dinding, kekuatan kompresif unit blok individu yang berlainan telah dinilai dengan cara menguji 40 unit blok bagi setiap jenis blok yang digunakan bagi memasang dinding iatu unit blok stretcher, corner dan half.

Seterusnya tiga prisma campuran cair diuji dan disbanding dengan prisma bukan campuran cair untuk meneroka kesan grot terhadap kekuatan prisma. Semua keputusan ini dibandingkan dengan keputusan yang diperoleh daripada penyelidik lain.

Lima spesimen dinding berukuran 1.20m lebar dan 3.00m tinggi telah diuji di bawah kesan beban paksi menegak dan eksentrik dengan mengambil kira keessentrikan berbeza 40 dan 55 mm. Penyelidikan ini bertujuan untuk menyiasat kesan dua susun atur pengkaku yang berbeza dari segi gerak balas struktur mereka berbanding dengan dinding tidak berpengkukuh dengan mengutamakan perbezaan antara dinding berpengkukuh perbezaan antara kait panca dan masonri terikat konvensional menggunakan lapisan mortar. Dalam susun atur pertama pengkaku konkrit terkukuh ditempatkan pada perimeter dinding di samping pengkaku melintang pada ketinggian tengah dinding. Gerak balas struktur bagi panel yang diuji telah dipantau dari segi keberkesanan dinding, ciri-ciri deformasi, pengurangan penyebaran terikan bagi keupayaan dinding disebabkan kesan rekahan beban eksentrik dan mod kegagalan.

Keputusan ujian menunjukkan bahawa kehadiran pengkukuh telah menambah baik tingkah laku panel yang diuji dengan menambah keupayaan membawa panel terkukuh sebanyak 15% hingga 30% berbanding dengan specimen yang tidak terkukuh. Tambahan pula pengkukuh yang terletak pada ketinggian tengah dinding memainkan peranan penting dalam keupayaan dinding dan mod kegagalannya.

ACKNOLDGEMENT

In The Name of ALLAH Most Gracious Most Merciful

It's my pleasure to express my deep thanks and gratitude to my Supervisor Assoc. Prof. Dr Waleed A Thanoon, who introduce me to this field, for his valuable time of discussion and supervision, my great thanks to Assoc. Prof. Ir. Dr. Mohd Saleh Jafaar, Assoc. Prof. Ir. Dr. Mohd Razali A Kadir, and Assoc. Prof. Dr. Jamaluddin Noorzae for their valuable time, direct supervision and discussion.

Many great thanks to structural laboratory staff for their valuable assistance, especially Mr. Hadi for his assistance in producing of blocks, Mr. Halim for the valuable time in helping fixing test set up.

I would like to express my deep gratitude to my parents' brother and sister for their kind support

Finally ALLAH will bless all friends in UPM.

FARES

TABLE OF CONTENTS

Page DEDICATION ii ABSTRACT iii ABSTRAK vi ACKNOLEDGEMENTS viii APPROVAL ix DECLARATION xi LIST OF TABLES xii LIST OF FIGURES xiii LIST OF ABBREVIATIONS xvi

CHAPTER

I	INTRODUCTION			
	General	1		
	Problem Statement	1		
	Scope and Objective	2		
	Organization of Thesis	3		
II	LITERATURE REVIEW			
	General	4		
	Conventional Masonry System	5		
	Prism Test Axial Load Capacity	5		
	Un-Reinforced Concrete Block Wall	8		
	Structural Behavior of Return Walls	12		
	Stiffened Hollow Block wall	13		
	Development of interlocking hollow block	20		
	Concluding remarks	38		
III	METHODOLOGY of EXPERIMENTAL PROGRAM			
	General	40		
	Interlocking Hollow Block	40		
	Material	42		
	Equipment	42		
	Experimental Program	44		
	Testing of Individual Block	44		
	Testing of Grouted Prisms	45		
	Wall Panel	46		
	Description of wall panels	46		
	Calculation of Load Carrying Capacity	49		
	Construction Procedure	49		

IV	RESULTS and DISCUSSION	
	Introduction	57
	Individual block strength	57
	Prism Test	60
	Structural Behavior of Interlocking Block Walls	63
	Compressive Strength	63
	Deformation Characteristics	66
	Lateral Deflection	66
	Discussion on Lateral Deflection	
	of Interlocking Walls	68
	Vertical Deflection	69
	Discussion on Vertical Deformation	71
	Load Strain Relation	74
	Discussion of Load Strain Relation	83
	Load Steel Strain Relation	84
	Failure Mode of Tested Panels	87
	Failure Mechanism	99

V	CONCLUSION	
	Introduction	102
	Contribution of the Study	105
	Recommendation for Future Work	106
REF	ERENCES	R-1

A-1

BIODATA OF THE AUTHOR

LIST OF TABLES

Table		Page
3.1	The Physical Properties of Different Block Units Used in Construction	41
3.2	Tested Groups and their Groups Specimens	47
4.1	Efficiency Factors of Different Prism Specimen	59
4.2	Increase in Strength Compared to Un-stiffened Wall	62
4.3	Comparison between Bs Code Design Value and Ultimate Failure Load for Tested Specimens	101

LIST OF FIGURES

Figur	es	Page
2.1	Load Eccentricity Relations	6
2.2	The Variation of Prism Strength with Grout Strength	8
2.3	Load Lateral Deformation for 10ft wall	9
2.4	Load Axial Deformation Curve for Axial Load Case.	10
2.5	Load Strain Relation for Tested Wall under Eccentric Load of t/3	11
2.6	Lateral Deflection of Tested Panels	13
2.7	Load Deflection Curve for 10ft (3m) Height Walls	15
2.8	Variation of Strain at Steel Reinforcement	16
2.9	Load Strain Relation for Tested Panels under Eccentric Load of t/3	17
2.10	Load Strain Relation for Tested Panels under Eccentric Load of t/2	18
2.11	Relation between Ultimate Load and Grout Strength for One Course and Two Courses Bond Beam	19
2.12	Thallon Block System	20
2.13	Haener Block System	21
2.14	Block Unit Used by Abang	22
2.15	Mecano Block System	23
2.16	Block System Developed at Drexell University	25
2.17	WHD Wall Panel	25
2.18	Idealized Stress Strain Relations	26
2.19	Flexural Bending Test	27

xiii

2.20	Different Types of Surfaces Investigated by Marzahn	28
2.21	Stress Strain Relations for Dry Stack and Conventional Masonry Developed by Marzahn	28
2.22	Compressive Strength Bed Quality Relation	29
2.23	Block System Developed by Mirsa	30
2.24	Anand and Ramamurthy Block System	31
2.25	Load Eccentricity Relation by Anand and Ramamurthy	32
2.26	Smart Block System	33
2.27	Comparison between Bounded and Unbounded Walls	34
2.28	Efficiency Eccentricity Relation for Different Slenderness Ratio	35
2.29	Failure of Selected Walls Tested by Amad	36
2.30	Axial Deformation of Un-Stiffened PUTRA block panel	37
2.31	The Profiles of Lateral Deformation along the Height of Tested Walls under Different Eccentricity of Applied Load	37
3.1	Three Types of Blocks	41
3.2	Different Parts of Block Factory in UPM	43
3.3	Block Unit in Testing program	44
3.4	Prism	45
3.5	Description of Wall Specimens along with Different Stiffeners Cross Sections	49
3.6	Casting of R.C. stiffener at bottom edge of the wall	50
3.7	Wall Construction	51
3.8	Arrangement of Strain Gauges for Tested Groups	52
3.9	Test Set up	53
3.10	Boundary Condition at the Top and Bottom of Tested Wall	53

3.11	Boundary Condition at the Top and Bottom of Tested Wall	54	
3.12	Axial Deformation Apparatus		
3.13	3 Lateral Deformation Apparatus		
3.14	14 Data Logger		
4.1	Variation of Strength with Weight of Stretcher unit	58	
4.2	2 Strength Weight Relation for Corner Block		
4.3	.3 Strength Weight Relation for Half Block		
4.4	Failure of Individual Stretcher Block	59	
4.5	Failure Mode of Interlocking Prisms	63	
4.6	Efficiency Eccentricity Relation for Tested Putra Wall	65	
4.7	Eccentricity Load Relation for Interlocking and Normal block wall	66	
4.8	Lateral Deformation of Group A of panels	67	
4.9	Lateral Deformation of group B of tested panels	68	
4.10	10 Load Lateral Deformation for A ₃ and B ₂ Panel		
4.11	Vertical Deformation for Group A	70	
4.12	Load Vertical Deformation of Group B	71	
4.13	Vertical Deformation of A ₁ , B ₁ and Un-stiffened Panel	73	
4.14	Load Strain Relation for A ₁ Panel	75	
4.15	Load Strain Relation for A ₂ Panel	77	
4.16	Load Strain Relation for A ₃ Panel	79	
4.17	Load Strain Relation for B ₁ Panel	81	
4.18	Load Strain Relation for B ₂ Panel	83	
4.19	Load Steel Strain Relation for Group A	85	

4.20	Load Vertical Steel Strain Relation for Group B	86
4.21	Load Horizontal Steel Strain Relation	87
4.22	Failure of Wall A ₁	88
4.23	Failure of Panel A ₂	90
4.24	Failure of Panel A ₃	92
4.25	Failure of Panel B ₁	94
4.26	Failure of Panel B ₂	96
4.27	Wall Cross Section	99

ABBREVIATION

f _k :	is the compressive strength of masonry.
γmm	is the partial safety factor for masonry
b	is the width of masonry section
d _c	is the effective depth of masonry section
t	is the thickness of wall section
$\mathbf{f}_{\mathbf{y}}$	is the yield stress for steel reinforcement
A _{s1}	is area of steel under compression
A _{s2}	is area of steel under tension
γms	is partial safety factor for steel reinforcement
N	is design axial load
h _{ef}	is effective height
b _t	is cross section width

CHAPTER I

INTRODUCTION

General

Masonry is one of man's oldest building materials used in construction. Interlocking hollow block is recently used in construction of non-load and load bearing walls. The main concept of this new masonry system is the elimination of mortar layers in the wall, and instead blocks are stacked to assemble the wall.

There is actually limited research on the behavior of interlocking wall systems which is essential in order to compare the behavior of the interlocking wall systems to the conventional masonry using mortar layer. This study highlights the structural behavior of the stiffened interlocking hollow block walls in which the tested wall panel is categorized into two groups; the first one is stiffened with perimeter stiffener while second one stiffened with perimeter stiffener and mid height bond beam.

Problem Statement

Currently there is no standard available for the design of load bearing interlocking block system. the structural behaviour and design parameters for this system are expected to be different than the conventional load bearing wall system. This research is mainly focused on the structural behavior of interlocking hollow block walls with stiffeners constructed using PUTRA interlocking hollow block under effect of axial and eccentric vertical load at the top of wall.

For load bearing walls the designer can provide stiffener in order to improve the axial stiffness or lateral stiffness or the both for structure. (Mckenzie 2001)

Building codes state that situation should be avoided where damage to small area or failure of single element could lead to collapse of major parts of the structure. The provision of effective ties is necessary precaution to prevent progressive collapse. The layout also must be such as to give a stable and robust structure. However there are several types of ties as peripheral ties, internal ties, horizontal ties to column and walls, and vertical ties. (Macgniley and Choo 1990)

Scope and Objective

The main scopes and objectives of this study are:

- To investigate the structural behavior of interlocking hollow block wall with stiffener under axial and eccentric loads.
- 2) To study the structural behavior for the two groups of tested panels in which the first group is reinforced with perimeter stiffener and the second one is reinforced with perimeter stiffeners and mid height horizontal stiffener.
- To study the effect of eccentricity in reducing the strength of tested panels.
- 4) To investigate the failure mode of interlocking hollow block walls.

Organization of Thesis

The thesis is divided into five chapters; a brief description on the content of these chapters is presented below:

Chapter One: highlights the definition of the problem along with the scope and objectives of the study

Chapter Two: highlights the critical literature review on interlocking block and traditional masonry.

The experimental program will be highlighted in Chapter Three, with all necessary information regarding the specimens, boundary conditions, and method of test.

Chapter Four: The outcome of the results provides a clear picture about the strength capacity and behavior of the tested specimens.

The reached conclusions along with the recommendations for future research are highlighted in Chapter Five.

CHAPTER II

LITERATURE REVIEW

General

The traditional method of masonry construction is a time consuming process due to the presence of a large number of mortar joints. Early attempts were made to increase the size of the masonry units (blocks instead of brick) thereby it would reduce the number of mortar joints. The use of bedding mortar imposed constraints on the number of layers to be constructed daily.

The need to accelerate the rate of construction led to the elimination of bedding mortar and the development of non conventional methods in masonry construction, interlocking block system was one of these developments. The elimination of bedding mortar accelerates construction by reducing cost, and eliminates variations results from workmanship and moisture penetration.

This chapter covers the structural behaviour of bonded masonry as well as interlocking masonry system.

Conventional Masonry System Prism Test

Drysdale and Hamid (1983) investigated the effect of void percentage and grout strength on the behaviour of prism. The prism was half unit width (390 mm) three courses high (570 mm) with thickness of 190 mm using eight however The considered eccentricities were t/6, t/3 and 5t/12.

The result shows that the failure mode of the prism is not influenced by the percentage of voids in the block, when the load was applied at eccentricity of 0 and t/6. At t/6 eccentricity, splitting tension failure occurred at the compression side of grouted prisms. Tensile debonding of mortar at tension side was observed when the load applied at higher eccentricity of t/3 and 5t/12. The failure started by the development of crack along mortar joint followed by compression failure on opposite side. The results show that the grout increases the ultimate capacity particularly for small eccentricity of applied load.

Figure 2.1 shows that the eccentricity prism strength relation by using different types of grout. Comparing the test results of the same eccentricity shows that even very large changes in the quality of grout do not result in significant changes in relative strengths.

