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ABSTRACT 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

 

ON-CHIP COMMUNICATION SYSTEM MODELING APPROACH FOR 

RELIABILITY ANALYSIS FOCUSING ON FUNCTIONAL FAILURES  

By 

ARASH ABTAHI FOROOSHANI 

July 2012 

 

Chairman:    Fakhrul Zaman Bin Rokhani, PhD 

Faculty:        Engineering 

The advances in the process technology have shrunk the feature size which has paved 

the road to higher orders of integration in the recent years. Year by year, the number of 

components integrated into a single chip is growing. Resulted in larger number of 

interconnects, the communication between these components is increasingly taking over 

critical system paths and frequently becomes the basis for performance holdup. 

Variations of communication and circuit-level techniques are proposed in the literature 

to facilitate the communication between the on-chip components. While improving 

communication reliability, power consumption and communication delay are the main 

concerns of such techniques, most of them are evaluated under unrealistic assumptions 

about the on-chip communication system. Therefore, the lack of a comprehensive 

approach for modeling on-chip communication systems is highlighted as the motivation 
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behind this research. Based on that, a fast and accurate modeling approach inclusive of 

the impacts of significant contributors to the deep sub-micron noise as well as the 

dynamic behavior of the receivers is proposed.  

 

This research also investigates the tradeoff between accuracy and computational cost in 

crosstalk modeling as a part of the modeling approach which has critical impact on the 

total simulation precision and computational cost. Two algorithms are proposed to 

control the crosstalk simulation error while minimizing the required computational 

cost.An adaptive modeling window sizing method, along with an upper bound on the 

sampling error were applied to guarantee a high order of precision in simulating the 

crosstalk noise for an RLC interconnect model. The algorithms were verified and the 

resultsshow that minimum accuracy of 96% is maintained by applying the proposed 

crosstalk modeling approach while the number of required simulations is reduced by at 

least factor of 59% for  modeling window sizes bigger than 3. 

 

Finally, the significance of using a practical on-chip communication system model is 

demonstrated through applying the proposed modelling approach to study the impacts of 

different communication approaches and circuit-level modifications on the reliability 

performance focussing on functional failures. Using 4-PAM modulation as the signaling 

scheme together with three variations of Hamming block codes, the proposed on/off-
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chip communicationsystem model is compared to AWGN model in terms of bit error 

ratio. The results confirm that application of simplistic on-chip communication system 

models like AWGN or primitive crosstalk models leads to inaccurate evaluation of 

communication techniques while the proposed method is verified to offer a more 

realistic platform. 
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ABSTRAK 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

PENDEKATAN PEMODELAN SISTEM KOMUNIKASI DALAM CIP UNTUK 

ANALISIS KEBOLEHPERCAYAAN DENGAN TUMPUAN KEPADA 

KEGAGALAN FUNGSI 

Oleh 

ARASH ABTAHI FOROOSHANI 

July 2012 

 

Pengerusi:    Fakhrul Zaman Bin Rokhani, PhD 

Fakulti:        Kejuruteraan 

 

Kemajuan dalam teknologiproses telah mengecilkan saiz ciri yang telah membuka jalan 

kepada integrasi di peringkat yang lebih tinggi sejak kebelakangan ini. Tahun demi 

tahun, bilangan komponen yang disepadukan dalam satu cip semakin meningkat. 

Keadaan ini menyebabkan bilangan antara sambung yang lebih besar dan komunikasi 

antara komponen semakin mengambil alih laluan sistem kritikal dan kerap menjadi asas 

kepada kelambatan prestasi. Variasi teknik pada peringkat komunikasi dan litar telah 

dicadangkan untuk memudahkan komunikasi di antara komponen atas cip. Dalam 

meningkatkan kebolehpercayaan komunikasi, penggunaan kuasa dan sela masa 

komunikasi adalah kebimbangan utama kepada teknik-teknik tersebut dan 

kebanyakannya dinilai berdasarkan andaian yang tidak realistik terhadap sistem 
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komunikasi atas cip. Oleh itu, pendekatan yang kurang menyeluruh terhadap pemodelan 

sistem komunikasi atas cip diketengahkan sebagai motivasi kepada kajian ini. 

Berdasarkan ini, pendekatan pemodelan yang cepat dan tepat disertai dengan impak 

penyumbang penting kepada hingar sub-mikron dan juga sifat dinamik penerima 

dicadangkan.  

Kajian ini juga menyiasat hubungan antara kejituan dengan kos pengiraan pemodelan 

hingar bersilang sebagai salah satu pendekatan pemodelan yang mempunyai kesan 

kritikal ke atas kepersisan simulasi dan kos pengiraan. Dua algoritma dicadangkan bagi 

mengawal ralat simulasi hingar bersilang dan dalam masa yang sama mengurangkan kos 

pengiraan yang diperlukan. Satu teknik permodelan saiz tingkap ubah suai, bersama 

dengan batas atas kepada ralat persampelan telah digunakan untuk menjamin kepersisan 

yang tinggi di dalam simulasi hingar bersilang untuk model antara sambung RLC. 

Algoritma tersebut telah disahkan dan keputusan menunjukkan kejituan minima 

sebanyak 96% dikekalkan dengan menggunakan pendekatan yang dicadangkan dan 

dalam masa yang sama bilangan simulasi yang diperlukan dapat dikurangkan kepada 

sekurang-kurangnya 59% bagi model saiz tingkap lebih besar daripada 3. 

Akhirnya, kepentingan menggunakan model sistem komunikasi atas cip yang praktikal 

telah ditunjukkan melalui penggunaan pendekatan yang dicadangkan dalam mengkaji 

impak pendekatan komunikasi yang berbeza dan pengubahsuaian di peringkat litar ke 

atas prestasi kebolehbergantungan dengan tumpuan kepada kegagalan fungsi. Dengan 

menggunakan modulasi 4-PAM sebagai skim isyarat, bersama dengan tiga variasi kod 
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blok Hamming, model sistem komunikasi dalam/luar cip yang dicadangkan telah 

dibandingkan dengan model AWGN dari segi nisbah ralat bit. Keputusan mengesahkan 

yang penggunaan model sistem komunikasi adalam cip yang mudah seperti model 

AWNG atau modelhingar bersilang primitif membawa kepada ketidaktepatan penilaian 

ke atas teknik komunikasi sementara kaedah yang dicadangkan telah dibuktikan dapat 

menawarkan platfom yang lebih realistik. 
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 Preface 

Year by year the human being expects more functionality and speed from the digital 

devices he uses every day. It was not so long ago that the answer to these demands was 

simply more number of transistors on a single chip with higher clock frequencies. The 

industry has been able to shrink the feature size and integrate as many transistors as 

Moore predicted [1]. The smaller transistors also enabled the predicted space for the 

frequency increase; however, the constraints on power consumption [2]  and the raise in 

thermodynamic impacts [3] put an end to this trend. The new solution to boost the 

number of instructions performed per second was to divide the work already done by 

one processor core and assign it to more number of processors (Figure 1.1).  

 

In the past few years, prototypes of multi-processor units with 48 and 80 cores have 

been produced by Intel® (Figure 1.2) revealing the challenges in the single chip multi-

core design [4].  In the first quarter of 2011, Nvidia® the technology company best 

known for its graphics processors also introduced Tegra™ 3, a commercial mobile 

multi-processor series built based on 40nm technology including 12 task specific 

processors. The number of processor cores on Tegra™ 3 was increased by 4 comparing 

to its predecessor Tegra™ 2 which was released almost a year before [5]. 
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Figure 1.1: Processor Speed Trend [6] 

 

 

 

Figure 1.2: Intel 80-core (left) [7] and 48-core [8]Research Chips (right) 

 



© C
OPYRIG

HT U
PM

3 

 

On account of enhancements in process technology, number of components being 

integrated into a single System-on-Chip is progressively growing.  Resulted in larger 

number of interconnects, the communication between these components is increasingly 

taking over critical system paths and frequently becomes the basis for performance 

holdup [9]. In fact, similar to other communication scenarios, the key concerns here are 

higher data rates, lower energy consumption and further reliability against noise. 

However, as the feature size and the supply voltages shrink, the signal integrity is 

getting more and more threatened by the deep submicron (DSM) noise sources on the 

on-chip interconnects [10]. Moreover, the power consumption of on-chip interconnects 

can reach up to 50% of the total chip power consumption in new multi-core designs 

[11].   

 

1.2 Motivation and Problem Statement 

Generally speaking, the on-chip communication studies can be branched into two 

prominent areas (Figure 1.3). First one is concentrated on the communication system 

modeling and improvement, while the second one concentrated on the communication 

techniques in charge of improving reliability, speed and or power consumption. The 

developed models in the first category are supposed to serve the purpose of evaluating 

the performance of the communication techniques in early stages of design.  
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Figure 1.3: On-chip Communication Studies 

 

 From the communication point of view, the signals of on-chip interconnect flow from 

the drivers, through the channel (interconnect wires) to the receivers.  Different DSM 

noise sources have been identified affecting each of these components of the 

interconnect communication system [12]. These noise sources can result in functional as 

well as timing failures. Figure 1.4 lists the DSM noise sources. 

 

Figure 1.4: Deep Sub-micron Noise Sources[12] 
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To increase the reliability of the communication system, two approaches have been 

identified [12]. The first approach is through the noise budgeting approach which 

applies the worst case analysis leading to increase of the noise margin in order to 

mitigate the noise. This approach results in high signal-to-noise ratio (SNR) at the 

expense of high power dissipation [13]. The analysis is rather a pessimistic analysis, to 

consider all noise sources to happen simultaneously at the worst possible extreme value 

which is misleading in real design.  

 

The other approach is the fault-tolerant communication strategy which consists of 

design techniques that are inherently tolerant to noise and errors. Well-known 

subcategories under this topic are dynamic noise analysis, bus encoding, and channel 

coding [10]. These methods have shown great success versus the noise-budgeting 

approaches in terms of optimality in speed and power [14–16]. However, such 

communication techniques were largely evaluated through simplistic low-precision 

channel models which could not show the actual capacity of the techniques.  

 

 In order to evaluate the fault-tolerant communication techniques, the very fundamental 

requirement is a comprehensive model of the communication system which consists of 

the drivers, receivers and interconnects. Hence, the development of a communication 

system modeling approach that accounts for the impacts of significant noise sources as 
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well as the dynamic behaviour of the receiver gates on signal integrity is the most 

important motivation of this thesis. This research proposes an on-chipcommunication 

system modeling approach based on superposition principle and sampling theorem that 

not only is fast enough to evaluate on-chip communication techniques but is also 

accurate and relatively comprehensive. 

 

1.3 Aim and Objectives 

The significance of on-chip communication as well as the demand for practical 

communication system modeling approaches was highlighted in the past two sections. 

The main aim of this research is to propose an on-chip communication system modeling 

approach with focus on functional failures on silent wires which is suitable for 

evaluating the reliability performance of the on-chip communication techniques. Silent 

wires are those wires in a bus which their logical state does not alter between two clock 

periods. These wires are prone to unintended change in their state due to the noise 

induced by the neighboring transitioning wires also known as aggressor wires. 

Normally, enormous number of transitions is needed for evaluating the on-chip 

communication techniques since the techniques are usually designed to minimize the bit 

error ratio (BER) so that the communication last longer free of errors. Therefore, the 

objective in this research is to develop a modeling approach which is substantially faster 

in simulation and imposes less computational costs comparing to circuit-level 

simulators. Besides, the simulation speed in such an approach should not jeopardize the 
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accuracy and the model must be accurate enough to provide reliable performance results 

at the early stages of design. Furthermore, the approach should include the impacts of 

interconnect wires and the behavior of receivers and be capable of modeling the 

significant contributors to noise. Note that investigating the impacts of drivers on signal 

integrity is excluded in this research and a commonly applied method is used to model 

them. This will be further explained in the third chapter. Furthermore, the dynamic noise 

analysis at the receiver is expanded from binary to four-level logic.This can open the 

door to developing such analysis for signaling schemes with higher number of levels. 

Figure 1.5 illustrates the necessary characteristics of a comprehensive on-chip 

communication system model. 
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Figure 1.5: The Necessary Characteristics of a Comprehensive On-chip 

Communication System Model 

 

Including capacitive and inductive crosstalk in the model is a critical task which 

significantly affects the simulation precision and computational cost. Thus, investigating 

the tradeoff between accuracy and computational cost in crosstalk modeling is another 

objective of this research. 
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The last but not the least, examining the reliability performance of different 

communication and circuit-level techniques using the proposed modeling methodology 

is an important goal in this research which allows emphasizing on the significance of 

using a more realistic on-chip communication system model. 

 

In summary, the objectives in this study are as follows: 

1. To propose an on-chip communication system modeling approach with focus on 

functional failures on silent wires which is computationally fast with high 

accuracy, suitable for evaluating the reliability performance of the on-chip 

communication techniques. 

 

2. To investigate the tradeoffs between accuracy and computational cost in 

crosstalk modelling. 

 

3. To examine the reliability performance of different communication and circuit- 

level techniques using the proposed modelling methodology. 
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1.4 Scope of the Work 

The proposed on-chip communication modeling approach is focused on simulating the 

transient behaviour of on-chip metallic interconnects. The accuracy of the modelling 

approach must be verified against Mentor Graphics Eldo Classic software [17] which is 

a SPICE accurate circuit simulator. Henceforward, this software is referred to with the 

term SPICE in interest of readability. 

 

BER is chosen as the criterion for the reliability analysis where the concentration is on 

functional errors happening on silent wires. Since the on-chip interconnect signal 

integrity covers a wide scope,the timing errors occurring on transitioning wires are not 

included in the analysis provided in this researchand the focus is on silent wires. The 

proposed modeling approach also includes the impacts of the DSM noise on parallel on-

chip interconnects and simulates the dynamic behaviour of the receiver circuit on signal 

integrity.   

 

Also, the selected communication techniques are chosen based on their attributes that 

help investigating the importance of accurate and fast on-chip communication system 

modelling. Thus the selection does not necessary represent the best low-power or fault-

tolerant communication techniques though their performance is compared with current 

methods. 
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Finally, completely random binary data with uniform probability function is generated 

and used for the reliability and power consumption analysis presented in this work.  

 

1.5 Contributions of the Thesis 

In this thesis, the on-chip communication system modeling problem is addressed by 

proposing an accurate, fast and relatively comprehensive modeling approach. The 

proposed modeling approach includes the impacts of the channel and the receiver on the 

signal integrity where its focus is on the functional failures on silent wires.  

 

Moreover, the tradeoffs between accuracy in crosstalk modeling and computational 

costs are studied. Based on that, twoalgorithmsareproposed to reduce the cost while 

keeping the accuracy at the desired level. The adaptive modeling window sizing method, 

along with the upper bound on the sampling error guarantee a high order of precision in 

simulating the crosstalk noise for an RLC interconnect model. 

 

Eventually, the importance of such modeling approaches in evaluation of 

communication and circuit-level techniques in the early stages of design is identified 

through capturing the reliability performance of a low-power signaling scheme with 

three variations of a fault-tolerant technique.  
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This thesis is made up of five chapters. The motivation, problem statement, objectives 

and the scope of the work are stated in the first chapter. Chapter 2 is divided into eight 

sections which introduce the required background and construct the foundation for the 

proposed modeling approach. The on-chip communication system modeling approach 

including dynamic noise margins (DNM) thresholding for 4-PAM is proposed and 

explained in the third chapter followed by the methodologies for developing the building 

blocks of the proposed modeling method. Chapter 3 explains the simulation scenarios 

and the communication techniques used for reliability analysis. The validity of the 

proposed approach in the third Chapter is evaluated and verified in Chapter 4. 

Additionally, Chapter 4 presents and discusses the results of the reliability analysis for 

the simulation scenarios introduced in Chapter 3 and highlights the importance of using 

more realistic models in exploring the design space. Finally, conclusions of the research 

and recommendations for future works are presented in the Chapter 5. 
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