UNIVERSITI PUTRA MALAYSIA

THERMAL DIFFUSIVITY AND QUALITY DETERIORATION INDEX OF MALAYSIAN PANGASIUS SUTCHI DURING COLD STORAGE

KASSIM ALI ABBAS.

FK 2005 3
THERMAL DIFFUSIVITY AND QUALITY DETERIORATION INDEX OF MALAYSIAN *PANGASIUS SUTCHI* DURING COLD STORAGE

By

KASSIM ALI ABBAS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia In Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2005
DEDICATION

Especially dedicated to:

To my parents, my brothers and sisters
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

THERMAL DIFFUSIVITY AND QUALITY DETERIORATION INDEX OF MALAYSIAN PANGASIUS SUTCHI DURING COLD STORAGE

By

KASSIM ALI ABBAS

December 2005

Chairman: Associate Professor Ir. Megat Mohd Hamdan Megat Ahmad, PhD

Faculty: Engineering

The knowledge on thermal properties of food material to be preserved is considered as one of the basic requirements for conducting heat transfer studies and hence to design proper heat transfer equipments such as refrigerators, freezers and cold storages. The local designers obtain those thermophysical properties data from Europe and America (Ansari et al., 2002).

Experimental measurements have been carried out for the specific heat, mass density, water content, thermal conductivity and thermal diffusivity of Malaysian freshwater Pangasius Sutchi fish during precooling process. The mass density was determined by measuring mass and volume of the fish samples and the water content was measured gravimetrically through drying of fish samples in oven. The remaining properties were calculated by empirical formulae, which correlated these properties with water content of fish.

The most significant part in the experimental work was designing and fabrication of an air blast cooling plant of constant 1 °C air stream temperature. This plant has
played the vital role in minimizing the error of the used techniques as well as thermal diffusivity determination.

A non-dimensionalized mathematical model of temperature variation with time and spatial coordinates was made and solved by finite difference method. Factors affecting the solution have been investigated thoroughly to deliver the most accurate and reliable results with the shortest computational time. The calculation procedure has been developed and proposed for heat transfer and simultaneous heat and mass transfer model. The proposed scheme showed more superior results when compared with the results reported in the literature and yielded consistently good agreements with the measurements.

Three approaches of estimating the surface film conductance \(h \) during air-blast cooling process were developed by the present author. Based on the above mathematical model, a comparison between the developed and five of the existing literature approaches was made to identify the best one. A thorough investigation was conducted to establish the most suitable and reliable method of measuring the thermal diffusivity of *Pangasius Sutchi* out of important methods reported in the literature. Due to its superiority, Ansari's method was adapted to calculate the thermal diffusivity, through the transient temperature measurements at five known locations in the fish flesh and at the surface. The estimated \(h \) was used in this method to deliver reliable values of \(\alpha \).

Four lots of fish samples were preserved in 4 chillers set at 0, 3, 5 and 10°C for 28 days according to normal practice. During the course of cold preservation, the
samples were subjected to three sorts of tests periodically. Firstly, the sensory test which comprises overall acceptance (consumer acceptability acc). Secondly, chemical tests, which included the pH and Thiobarbituric acid (TBA) tests. These tests play the main role in determining the development of rancidity evolution in the fish under present investigations. The last type of test was the thermal diffusivity determination through transient temperature measurements across the muscles orientation, as well as along the muscles orientation.

The above study has revealed that the consumer acceptability (acc), pH and TBA value were found to be strongly dependent upon temperature and time of cold preservation. The results of acc and PH led to yield a graphical solution by which the consumer acceptability and the shelf life of the fish, during cold storage, could be predicted.

TBA was correlated with thermal diffusivity ratio \(\alpha/\alpha_{fresh}\) to develop a tool by which rancidity of fish could be predicted without going through the chemical test, hence, a new quality deterioration index was developed. When the value of \(\alpha/\alpha_{fresh} = 1.0\) indicates absolutely fresh sample, and \(\alpha/\alpha_{fresh} > 1.0\) the lesser the freshness.
Pengetahuan tentang sifat termal bahan yang akan diawet merupakan keperluan asas bagi menjalankan kajian pemindahan haba dan bagi mereka bentuk peralatan pemindahan haba yang sesuai seperti peti sejuk dan storan sejuk. Pada masa ini, pereka tempatan meminjam data-data sifat termofizikal ikan air tawar dari Eropah dan Amerika (Ansari et al., 2002).

Dalam kajian ini, pengukuran telah dijalankan bagi menentukan haba tentu, ketumpatan jisim, kandungan air, konduktiviti dan kemeresan haba bagi ikan *Pangasius Sutclfi*, semasa pra-penyejukan. Ketumpatan jisim telah ditentukan dengan mengukur jisim dan isipadu sampel ikan dan kandungan air telah diukur mengikut kaedah gravimetrik melalui pengeritingan sampel ikan di dalam ketuhar. Sifat-sifat lain telah dihitung dengan rumusan secara empirikal yang mengaitkan sifat-sifat tersebut dengan kandungan air ikan.
Bahagian terpenting dalam ujikaji ini adalah merekabentuk dan membina logi pendingin bagas udara pada suhu malar, 1°C. Loji ini berfungsi dalam pengiraan kemerkesapan haba dan meminimumkan ralat. Satu model matematik tanpa demensi untuk variasi suhu dengan masa dan koordinat spatial telah dibangunkan dengan kaedah perbezaan terhingga. Faktor mempengaruhi penyelesaian telah dikaji untuk menghasilkan keputusan yang tepat dan boleh diharap untuk masa pengkomputeran yang paling pendek. Prosedur pengiraan telah dibangunkan dan dicadangkan untuk model pemindahan haba dan model pemindahan haba dan jisim. Keputusan yang lebih baik telah diperolehi jika dibandingkan dengan keputusan dalam literatur, dan bertepatan dengan keputusan ujikaji.

Tiga kaedah pendekatan bagi menganggar kealiran saput permukaan (h) semasa proses penyejukan bagas udara telah dibangunkan. Perbandingan antara lima pendekatan yang dilaporkan oleh penyelidik lain dan tiga lagi yang dibangunkan oleh pengarang telah dijalankan bagi mendapat kaedah yang terbaik. Satu kajian yang menyeluruh telah dijalankan bagi mencari dan membangunkan kaedah yang sesuai bagi mengukur kemerkesapan haba bagi ikan air tawar _Pangasius Sutchi_. Keputusan menunjukkan bahawa kaedah Ansari adalah lebih tepat, boleh diharap dan lebih stabil berbanding dengan kaedah lain. Kaedah ini telah diguna pakai bagi mengira kemerkesapan haba melalui analisis pemindahan haba transien dengan pengukuran haba pada lima lokasi dalam isi ikan dan pada permukaan ikan. Nilai h anggaran telah diguna pakai untuk menentukan nilai α.

Empat kelompok sampel telah diagihkan ke dalam 4 pendingin pada suhu masing-masing 0, 3, 5 dan 10°C. Kelompok tersebut telah disimpan selama 28 hari mengikut
tabii penstoran lazim. Semasa dalam keadaan beku ini, sampel ikan telah melalui tiga jenis ujian secara berkala. Pertama, ujian deriaan yang meliputi penerimaan pengguna (acc), kedua, ujian kimia yang merangkumi ujian pH dan asid Thiobarbituric (TBA). Ujian ini memainkan peranan yang penting dalam menentukan pembangunan kaedah pengawetan ikan yang dikaji. Ujian terakhir adalah penentuan kemeresapan haba suhu transien (pra - penyejukan) dan juga berdasarkan arah merentang dan selari otot ikan turut dijalankan.

Kajian menunjukkan nilai penerimaan pengguna (acc), pH dan TBA dipengaruhi oleh suhu dan tempoh masa penyejukan. Keputusan penerimaan pengguna dan pH secara graf untuk digunakan dalam membuat jangkaan keatas tahap kesegaran ikan sepanjang tempoh storan sejuk.

TBA dikolerasikan dengan sifat termal (\(\alpha/\alpha_{segar}\)) digunakan untuk membangunkan satu kaedah untuk menentukan tahap pengawetan ikan tanpa melalui ujian kimia dan seterusnya indeks tahap kesegaran ikan secara berangka menerusi suhu pengawetan telah dibangunkan. Nilai bagi pecahan \(\alpha/\alpha_{segar} = 1.0\) bermaksud sampel ikan adalah segar sepenuhnya, dan apabila nilai \(\alpha/\alpha_{segar} >1.0\) kesegaran ikan akan berkurangan.
ACKNOWLEDGEMENTS

First and foremost I thank Allah the Almighty for the blessings and opportunities that He has provided me to accomplish this study.

I would like to express my sincere thanks to my advisor and committee chairman, Associate Professor Dr. Megat Mohd Hamdan Megat Ahmad, who was a constant source of advice, encouragement and all kinds of support throughout this study. I wish to express my thanks to the other members of my supervisory committee, Professor Dr. Jamilah Baker, Associate Professor Dr. Mohd Sapuan Salit, Associate Professor Dr. Ashraf Ali Omar and Associate Professor Dr. Wan Mohd Abdullah for their helpful discussions and advice. I highly appreciate their time and willingness to serve in my supervisory committee.

I wish to extend my thanks to the staff of the Department of Mechanical and Manufacturing Engineering Universiti Putra Malaysia for their friendly dealing and moral support. I gratefully acknowledge the help and patience of Dr. Ahmad Samsuri Mokhtar, the kindest person, whom I met in Malaysia. I also thank my friends and colleagues for sharing their knowledge and encouragement.

I gratefully acknowledge the support, the guidance and effective advices of Professor Dr. Firoz Akhtar Ansari whom I will never forget for his help and favor wherever I live. Thanks must also go to Professor Dr. I. Dincer, Professor Dr. R. Masheroni and Professor Dr. T. Pham, the stars of food cooling, who provided me with a lot of research papers in the area of the current research work as well as to their wonderful encouragement and advices.
I certify that an Examination Committee met on 14th December 2005 to conduct the final examination of Kassim Ali Abbas on his Doctor of Philosophy thesis entitled "Thermal Difusivity and Quality Deterioration Index of Malaysian Pangasius Sutchi During Cold Storage" in accordance with University Pertanian Malaysia (Higher Degree) Act 1980 and University Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ir. NOR MARIAH ADAM, PhD
Associate Professor
Faculty of Engineering
University Putra Malaysia
(Chairman)

Ir. BARKAWI BIN SAHARI, PhD
Professor
Faculty of Engineering
University Putra Malaysia
(Member)

Ir. ABDUL MAJID HAMOUDA, PhD
Professor
Faculty of Engineering
University Putra Malaysia
(Member)

Ir. FARID NASIR, PhD
Professor
Faculty of Engineering
University Putra Malaysia
(External)

HASANAH MD. GHAZALI, PhD
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 FEB 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as a fulfilment of the requirement for the degree of Doctor of Philosophy. The Members of the Supervisory Committee are as follows:

Ir. Megat Mohamad Hamdan bin Megat Ahmad, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Wan Mohamad Wan Abdullah, PhD
Associate Professor
Malaysian Institute of Chemical and Bioengineering Technology
Universiti Kuala Lumpur
(Member)

Jamilah Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Mohamad Sapuan Salit, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Ashraf Ali Omar, PhD
Associate Professor
Faculty of Engineering
International Islamic University Malaysia
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 MAR 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

KASSIM ALI ABBAS

Date: 14/2/2005
TABLE OF CONTENTS

DEDICATION ... ii
ABSTRACT .. iii
ABSTRAK ... vi
ACKNOWLEDGEMENTS ix
APPROVAL .. x
DECLARATION ... xii
LIST OF TABLES xvii
LIST OF FIGURES xvii
NOMENCLATURE xxii

CHAPTER

1 INTRODUCTION 1
1.1 Refrigeration and Food Safety 1
1.2 Fish Composition and Muscle Orientation ... 2
1.3 Methods of assessing fish quality 4
1.4 Problem Identification 5
1.5 Objectives of the Study 9
1.6 Scope and limitations 9
1.7 Thesis layout 10

2 LITERATURE REVIEW 11
2.1 Thermal Properties and System Parameters ... 11
 2.1.1 Mass Density 11
 2.1.2 Specific Heat Capacity 12
 2.1.3 Water Content 15
 2.1.4 Thermal Diffusivity and Thermal Conductivity 16
 2.1.4.1 Steady State Methods (Guarded Hot Plate Method) 20
 2.1.4.2 Unsteady State Methods 21
 2.1.4.2.1 Line Heat Source Probe Method 21
 2.1.4.2.2 Calorimetric Method 21
 2.1.4.2.3 Thermister Probe Method 22
 2.1.5 Surface Heat Transfer Coefficient 23
2.2 Heat and Mass Transfer Analysis During Precooling Process 31
 2.2.1 Governing Equation and Simplifying Assumption 34
 2.2.2. Initial and Boundary Conditions During Precooling 36
 2.2.2.1 Initial Condition 36
 2.2.2.2 Center Boundary Condition 37
 2.2.2.2 Surface Boundary Condition 37
 2.2.3 Non-Dimensional Heat Transfer Equation 38
 2.2.3.1 Finite Difference Solution (Numerical Solution) 40
 3.4.1.2 Empirical Solution (Ansari's Solution) ... 43
 3.4.1.3 The Analytical Solution (Dincer's Solution) 44
2.3 Test Rig Features and the Thermal properties 45
2.4 Freshness Test Methods 47
 2.4.1 Sensory Method 48
 2.4.2 Physical Methods 49
2.4.2.1 Texture Changes
2.4.2.2 Refractive Index
2.4.2.3 Electrical Conductivity
2.4.2.4 Optical Test
2.4.2.5 Viscosity Method
2.4.3 Freezing Point Depression
2.4.4 Chemical test
 2.4.4.1 TBA test
 2.4.4.2 PH test
2.5 Summary of Literature Review

3 METHODOLOGY
3.1 Research Framework
3.2 Air Blast Cooling Plant Fabrication
3.3 Fish Sourcing
3.4 Filleting and Sourcing
3.5 Thermophysical Properties Determination
3.6 Mathematical Model Development
3.7 Surface Film Conductance Determination
3.8 Cold Storage Processes
3.9 Thermal Diffusivity Test
3.10 pH Test
3.11 Sensory Test
3.12 TBA Test
3.13 Summary

4 EXPERIMENTAL SET UP AND MEASUREMENT TECHNIQUES
4.1 Group 1
 4.1.1 Measurement of Mass Density
 4.1.2 Measurement of Water Content
4.2 Group 2
 4.2.1 Test container
 4.2.2 Refrigeration System
 4.2.3 Humidification Arrangement
 4.2.4 Instrumentation and Control
 4.2.4.1 Measurement of Temperature
 4.2.4.2 Psychrometer System
 4.2.4.3 Data Logging System
 4.2.4.4 Measurement of Air Stream Velocity
4.3 Group 3 (biochemical tests)
 4.3.1 Fish Procuring and Filleting
 4.3.2 Cold Storage Processes
 4.3.3 Determination of pH
 4.3.4 Determination of TBA
 4.3.5 Sensory Evaluation
4.4 Summary

5 RESULT AND DISCUSSION PART I (ERROR MINIMIZING OF METHODS)
5.1 Introduction
5.2 Finite Difference Solution Parameters Study
 5.2.1 Weighting Factor (θ)
 5.2.2 Stability and Processing Time
 5.2.3 Effect of Number of Division (n)
 5.2.4 Effect of Sensor Location
 5.2.5 Effect of Fourier Number Increment
 5.2.6 Effect of Approximation Order in Boundary Conditions
 5.2.7 The Authors' Scheme of Temperature Calculations
 5.2.8 Further Authentication of the Authors' Scheme

5.3 Developing of Method of Surface Film Conductance Determination
 5.3.1 Approach (1) Iterative Ansari Scheme (IAS)
 5.3.2 Approach (2) Modified Ansari Scheme (MAS)
 5.3.3 Approach (3) Inverse Heat Conduction Problem (IHCP)
 5.3.4 Comparison Study of The Approaches

5.4 Error Minimization for Scheme for Incorporating Desiccation Effect on The Cooling Rate
 5.4.1 Heat and Moisture Transfer Model
 5.4.2 Factors Influencing Moisture Transpiration
 5.4.3 Total Surface Film Conductance Determination
 5.4.4 Heat and Mass Transfer Behaviour and Temperature Calculation during Precooling
 5.4.5 Verification of The Model

5.5 Optimization of the Method for Thermal Diffusivity Measurement
 5.6 Summary

6 RESULT AND DISCUSSION (QUALITY INDEX)
 6.1 Introduction
 6.2 Variation of Thermal Diffusivity during Cold Storage
 6.3 pH Evolution and Consumer Acceptance
 6.4 TBA Test
 6.5 TBA Correlation
 6.6 Quality and Thermal Diffusivity Correlation
 6.7 Summary

7 CONCLUSIONS AND RECOMMENDATIONS
 7.1 Introduction
 7.2 Heat and Mass Transfer Studies
 7.3 Fish Quality Deterioration Studies
 7.4 Recommendation for Future Work

BIBLIOGRAPHY
APPENDICES
BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Holding Temperature and Shelf Life</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Constants in equation (2.23)</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Data for slab shaped fish sample</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Constants in equation (3.2)</td>
<td>65</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of increment of Fourier</td>
<td>97</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of number of divisions</td>
<td>98</td>
</tr>
<tr>
<td>5.3</td>
<td>The average error for each approach</td>
<td>119</td>
</tr>
<tr>
<td>5.4</td>
<td>The variable correlation models for some approaches</td>
<td>125</td>
</tr>
<tr>
<td>6.1</td>
<td>Predicted quality and shelf life with temperature and time of storage</td>
<td>161</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Muscle orientations with respect to backbone of typical fish slice</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Thermal Diffusivity versus temperature for ten fish species</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Dincer Air Blast Cooling Plant</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>Ansari Set up</td>
<td>46</td>
</tr>
<tr>
<td>2.4</td>
<td>Modified Ansari test set up</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart describes the stages of the present study</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Temperature-time records of slab shaped sample during precooling process</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Coordinate system during precooling</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>The mesh of time and space intervals during the finite difference solutions</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Set-up for measurement of the sample volume</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic diagram of air blast cooling plant</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>An overall view of air blast cooling plant</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Test container details</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Pictorial view of the test container cavity</td>
<td>80</td>
</tr>
<tr>
<td>4.6</td>
<td>Schematic diagram of the test container (heat and mass transfer)</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>Schematic diagram of the Humidification arrangement</td>
<td>81</td>
</tr>
<tr>
<td>4.8</td>
<td>Locations of the local velocities in the cross sectional test duct</td>
<td>84</td>
</tr>
<tr>
<td>4.9</td>
<td>The calibration curve between the local and mean velocities</td>
<td>85</td>
</tr>
<tr>
<td>4.10</td>
<td>Measuring the fish length though fish preparation</td>
<td>87</td>
</tr>
<tr>
<td>4.11</td>
<td>The selected area for sampling</td>
<td>87</td>
</tr>
<tr>
<td>4.12</td>
<td>Schematic diagram of TBA distillate set up</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of computed and measured temperatures at the center of a</td>
<td>94</td>
</tr>
</tbody>
</table>
5.2 Error distribution throughout the sample (Fo ≥ 0.2) 95
5.3 Stability of computed temperature profiles of different sensor location during precooling process 96
5.4 The error variation with sensors locations and average throughout the sample (Fo ≥ 0) 97
5.5 Incorporation of error with Fourier number increment selection 99
5.6 The degree of order effect of on accuracy (ΔFo = 0.0498) 101
5.7 The degree of order effect of on accuracy (ΔFo = 0.00166) 103
5.8 Error distribution along X (Fo ≥ 0.2) 103
5.9 Temperature - time records of slab shaped sample during precooling process 104
5.10 Surface film conductance determination (IAS) 106
5.11 Surface film conductance determination (MAS) 108
5.12 Heat flux variation during the precooling process 111
5.13 The surface temperature distribution during the precooling process 112
5.14 Experimental and calculated temperature histories at the sensor position 114
5.15 Surface film conductance versus local temperature 114
5.16 Behaviour of predicted h with sensor locations 115
5.17 Deviation of predicted results from measured values (X = 0, 0.2 ≤ Fo ≤ 1.495) 119
5.18 Deviation of predicted results from measured values (X = 0, 1.495 ≤ Fo ≤ 2.99) 120
5.19 The characteristics of incorporated errors for the different approaches for X = 0 120
5.20 Inherent error distribution along X 121
5.21 Effect of moisture transpiration on surface film conductance 124
5.22 Deviation of the predicted results from the measured values (X = 0) 126
5.23 Deviation of the predicted results from the measured values (X = 0.2) 127
5.24 Deviation of the predicted results from the measured values (X = 0.4) 128
5.25 Deviation of the predicted results from the measured values (X = 0.6) 129
5.26 Deviation of the predicted results from the measured values (heat and mass transfer, X = 0.8) 130
5.27 The characteristics of incorporated errors for the different approaches (heat and mass transfer, X = 0) 131
5.28 The characteristics of incorporated errors for the different approaches (X = 0.2) 131
5.29 The characteristics of incorporated errors for the different approaches (X = 0.4) 132
5.30 The characteristics of incorporated errors for the different approaches (X = 0.6) 132
5.31 The characteristics of incorporated errors for the different approaches (X = 0.8) 133
5.32 Inherent error distribution along X 133
5.33 Coincidence of the Temperature-time records with the existing models (X = 0) 135
5.34 Coincidence of the Temperature-time records with the existing models (X = 0.2) 136
5.35 Coincidence of the Temperature-time records with the existing models (X = 0.4) 136
5.36 Coincidence of the Temperature-time records with the existing models (X = 0.6) 137
5.37 Coincidence of the Temperature-time records with the existing models (X = 0.8) 137
5.38 Comparison between the author model with the others (Fo ≥ 0.2) 140
5.39 Comparison between the author model with the others for the whole time 141
5.40 Thermal diffusivity values based on finite difference method (Heat flow along the muscles) 143
Thermal diffusivity values based on finite difference method (heat flow across the muscles)

Thermal diffusivity values based on Ansari’s method (Heat flow along the muscles)

Thermal diffusivity values based on Ansari’s method (heat flow across the muscles)

Comparative values of the three methods

The variation of thermal diffusivity during the cooling period across the muscles orientation

The variation of thermal diffusivity during the cooling period along the muscles orientation

The variation of the coefficients with storage temperature across the muscles

The variation of the coefficients with storage temperature along the muscles

Estimation of pH value during storage period

Relationship between acceptability and pH ratio

Variation of pH ratio during storage

Effect of storage temperature on spoilage

Predicted acceptability with temperature and time of storage

The relationship of shelf life with the storage temperature

TBA changes during storage time

The coefficient values of the TBA polynomial

The relationship between TBA and thermal diffusivity ratio across the muscles

The relationship between TBA and thermal diffusivity ratio along the muscles

The variation of the coefficients with storage temperature across the muscles

The variation of the coefficients with storage temperature along the muscles
6.17 Quality as a function of \((a / \alpha_{pca}) \) along the muscle

6.18 Quality as a function of \((a / \alpha_{pca}) \) across the muscle
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>acc</td>
<td>Sensory score</td>
</tr>
<tr>
<td>Bi</td>
<td>Biot number</td>
</tr>
<tr>
<td>cp</td>
<td>Specific heat capacity on mass basis</td>
</tr>
<tr>
<td>D</td>
<td>Day</td>
</tr>
<tr>
<td>e</td>
<td>Error percent</td>
</tr>
<tr>
<td>F</td>
<td>Fat fraction</td>
</tr>
<tr>
<td>Fo</td>
<td>Fourier number</td>
</tr>
<tr>
<td>h</td>
<td>Surface film conductance (coefficient of heat transfer)</td>
</tr>
<tr>
<td>h_c</td>
<td>Convection part of coefficient of heat transfer</td>
</tr>
<tr>
<td>h_d</td>
<td>Mass diffusivity coefficient</td>
</tr>
<tr>
<td>h_e</td>
<td>Effective (total) coefficient of heat transfer</td>
</tr>
<tr>
<td>h_fg</td>
<td>Latent heat of vaporization</td>
</tr>
<tr>
<td>h_me</td>
<td>Part of coefficient of heat transfer due to moisture evaporation</td>
</tr>
<tr>
<td>h_r</td>
<td>Radiation part of coefficient of heat transfer</td>
</tr>
<tr>
<td>k</td>
<td>Coefficient of thermal conductivity</td>
</tr>
<tr>
<td>L</td>
<td>Latent heat of fusion on volume basis</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>m_s</td>
<td>Mass of sample</td>
</tr>
<tr>
<td>m_w</td>
<td>Mass of water</td>
</tr>
<tr>
<td>n</td>
<td>Number of equal divisions of the characteristic length</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>p</td>
<td>Protein content fraction</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>P</td>
<td>Vapour pressure of unsaturated air</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>pH</td>
<td>Acidity of fish sample</td>
</tr>
<tr>
<td>pHf</td>
<td>Acidity of fresh fish sample</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>P_s</td>
<td>Vapour pressure of the wetted surface</td>
</tr>
<tr>
<td>Q</td>
<td>Heat energy</td>
</tr>
<tr>
<td>q_i</td>
<td>Rate of heat flux</td>
</tr>
<tr>
<td>q</td>
<td>Rate of heat generation of the sample</td>
</tr>
<tr>
<td>R</td>
<td>Relative spoilage rate</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>R_f</td>
<td>Final resistance of the thermistor</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>r_o</td>
<td>Radius of cylinder or sphere</td>
</tr>
<tr>
<td>S</td>
<td>Slope of the line, temperature versus log</td>
</tr>
<tr>
<td>Sc</td>
<td>Sensitivity coefficient</td>
</tr>
<tr>
<td>SL</td>
<td>Shelf life in days</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>TBA</td>
<td>Rancidity index</td>
</tr>
<tr>
<td>T_{db}</td>
<td>Dry bulb temperature of the cooling air</td>
</tr>
<tr>
<td>Te</td>
<td>Equilibrium temperature of the mixture</td>
</tr>
<tr>
<td>T_{wb}</td>
<td>Wet bulb temperature of the cooling air</td>
</tr>
<tr>
<td>U</td>
<td>Non-dimensional temperature</td>
</tr>
<tr>
<td>v</td>
<td>Volume</td>
</tr>
<tr>
<td>W</td>
<td>Percent water content on weight basis</td>
</tr>
</tbody>
</table>
x Space co-ordinate
X Non-dimensional space co-ordinate
X'_a Ash content, decimal
X'_c Carbohydrate content, decimal
X'_f Fat content, decimal
X'_p Protein content, decimal
x_0 Characteristic length (half thickness slab or radius for cylinder and spher
X_w Mass fraction of water

GREEK LETTERS
\(\alpha \) Coefficient of thermal diffusivity
\(\rho \) Mass density
\(\theta \) Weighing factor in the implicit-explicit Scheme
\(\phi_c \) Temperature difference between the object center and the coolant
\(\phi_s \) Temperature difference between the object surface and the coolant

SUBSCRIPTS AND SUPERSCRIPTS
+ Dimensionless
1 First test
2 Second test
ave Average
cm Cooling medium
db Dry bulb temperature
e End
f frozen

xxiv