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Specificity studies of a thermostable alkaline serine protease F1 with its 

substrates were carried out through computational docking method. 

Structures of a series of synthetic peptide substrates were docked to the active 

site of the homology modelled F1 protease using AutoDock 3.0.5. The 

resulting clusters of the substrates that were docked were analysed by 

inspecting the energetic results and the orientation of each cluster to 

determine the arrangement of productive binding. The amino acids of the 

binding site that participated in the hydrophobic and hydrogen-bond 

interactions were also determined. Docking results showed that all substrates 

tested bound near the catalytic residues with SucAAPFpNA, the biggest 

substrate, showing the most negative docked energy value @docked = -18.75 

kcal/mol). Smaller substrates such as GpNA and AApNA showed higher 

docked energy (Edocked = -7.77 kcal/mol and -8.77 kcal/mol, respectively). The 
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best docked structure of each substrate was determined from the clusters. It 

was found that most of the lowest Edocked conformations display the best 

docked orientations with respect to the least distance calculated between the 

carbonyl carbon of the substrate PI residue and y-oxygen of the Ser226 

catalytic triad. From the results, it also demonstrated that S1, S2 and S4 

subsites of the enzyme play a critical role in determining the substrate 

specificity of F1 protease from the point of view that bigger-sized substrates 

such as SucAAPFpNA and SucAAPLpNA showed more favourable Edocked. 

This work also support the hypothesis that the catalytic serine and histidine 

residues were essential in catalysis as well as in stabilizing the enzyme- 

substrate complex for binding. 

Validation of computational study was carried out through biochemical 

assay. It was found that SucAAPFpNA was the most preferred substrate for 

the enzyme with specific activity of 3.079 U/mg followed by SucAAPLpNA 

at 1.016 U/mg. SucAAPFpNA was also observed to show the highest binding 

affinity towards the protease (Km = 1.26mM) and the highest catalytic ratio 

(1.226 min-l.rnM-1) compared to the other substrates tested. Similar to 

computational observations, smaller peptides showed lower specific activity 

and binding affinity towards the protease. Rank-order of the substrates tested 

for the docking and experimental methods were found to be similar for the 

top two substrates, with lesser agreement for the other substrates. © C
OPYRIG

HT U
PM
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: Bioteknologi dan Sains Biomolekul Fakulti 

Suatu penyelidikan spesifikasi terhadap serine protease F1 yang stabil suhu 

tingp dart bersifat alkali bersama substrat telah dijalankan melalui kaedah 

percamturnan pengkomputeran. Struktur-struktur peptida sintetik telah 

dicantum ke tapak aktif F1 protease yang telah dimodelkan secara homologi 

dengan menggunakan AutoDock 3.0.5. Kelompok yang telah dihasilkan oleh 

substrat-substrat yang telah dicantum, telah dianalisa keputusan tenaga dan 

orientasi setiap kelompok untuk menentukan susunan cantuman yang 

produktif. Asid amino di tapak peng&at yang menyertai interaksi hidrofobik 

dan ikatan hidrogen juga telah ditentukan. Percanturnan substrat-substrat 

pada enzim ini menunjukkan yang kesemua substrat yang telah diuji 

mengikat berhampiran residu katalitik di mana SucAAPFpNA, iaitu substrat 

yang paling besar, menunjukkan nilai Edocked yang paling rendah, -18.75 

kcal/mol. Substrat-substrat yang lebih kecil seperti GpNA dan AApNA 

menunjukkan nilai Edocked yang lebih tinggi, masing-masing pada -7.77 
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kcal/mol dan -8.77kcal/mol. Struktur yang paling sesuai telah ditentukan 

daripada setiap kelompok. Didapati bahawa kebanyakkan konformasi Edoclred 

yang paling rendah mempunyai orientasi yang paling sesuai berpunca dari 

jarak di antara karbon karbonil substrat residu fl dan y-oksigen Ser226 triad 

katalitik yang paling rendah. Cantuman substrat-substrat itu juga 

menunujukkan subtapak S1, S2 dan S4 enzim memainkan peranan yang 

kritikal dalam penentuan spesifikasi substrat bagi F1 protease kerana didapati 

bahawa subtrat-substrat yang lebih besar seperti SucAAPFpNA dan 

SucAAPLpNA menunjukkan nilai Edocked yang lebih rendah. Kajian ini 

mengesahkan bahawa residu-residu katalitik seperti s e ~ e  dan histidine 

adalah penting dalam katalisis dan dalam pengstabilan kompleks enzim- 

substrat untuk percantuman 

Kajian kesahihan telah dijalankan dengan melakukan asai biokimia. Didapati 

bahawa SucAAPFpNA adalah substrat yang paling digemari oleh enzim ini 

dengan aktiviti spesifik, 3.079 U/mg diikuti SucAAPLpNA pada 1.016 

U/mg. SucAAPFpNA juga didapati mempunyai afiniti pengkatan yang 

paling tinggi terhadap protease (K, = 1.26m.M) dan ratio katalitik paling tinggi 

(1.226 min-l.rnM-1) berbanding dengan substrat-substrat lain yang diuji. 

Peptida yang lebih kecil didapati mempunyai spesifik aktiviti dan afiniti 

pengkatan yang rendah terhadap F1 protease, seperti yang telah diperolehi 

dari analisis pengkomputeran. Persamaan yang didapati daripada urutan 

substrat-substrat yang diperolehi daripada percantuman pengkomputeran 
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dan kaedah eksperimental adalah pada tempat kedua teratas, substrat- 

substrat lain kurang menunjukkan kaitan. 
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CHAPTER 1 

INTRODUCTION 

Proteases are enzymes thht cleave peptide bonds at points within the 

protein and remove amino acids sequentially from either N or C-terminus. 

There are four mechanistic classes of proteases, they are serine proteases, 

cysteine proteases, aspdrtic proteases and metallo proteases. Two distinct 

families can be observed for serine proteases, which are the chymotrypsin 

family and the subtilisin family which include the bacterial enzymes such 

as subtilisin (Rao ef al., 1998). An example of subtilisin serine protease is 

Bacillus stearothermophilus protease F1. B. stearofhermophilus was isolated 

from decomposed oil palm branches and its protease showing the 

characteristics of an extremely thermostable alkaline protease. B. 

stearothermophilus was shown to have a high degree of thermostability, 

able to grow up to 80°C with a pH range from 8.0 to 10.0. It has an 

optimum growth rate at 70°C and pH 9 (Rahman et al., 1994). 

Proteases differ in their properties such as substrate specificity, active site 

and catalytic mechanism. Structure-based mutational analysis of serine 

proteases specificity has produced a large database of information useful 

in addressing biological function and in establishing a basis for targeted 

design efforts (Perona and Craik, 1995). Despite extensive research on 

proteases, relatively little is known about the factors that control their 
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specificities. These questions that are difficult to answer experimentally, 

might be resolved theoretically. 

Molecular modelling methods have been used in many ways to address 

problems in structural biology. The overall aim of modelling methods will 

often be to try to relate biological activity to structure (Forster, 2002). 

Molecular modelling is a general term that covers a wide range of 

molecular graphics and computational chemistry techniques used to 

display, build, manipulate, simulate and analyze molecular structure and 

to calculate properties of these structures. Through modelling, the 

understanding of properties, three-dimensional conformations, and 

enzymatic mechanism can also be improved. 

One of the most useful areas of application of molecular modelling is the 

approach of fitting together, or docking, a protein to a second molecule. 

Molecular docking is important in understanding possible interactions 

between a protein and a ligand in the formation of a biologically 

important protein-ligand complex. It is also a suitable tool to estimate 

interaction energy of the binding step by means of ripd energy 

minimization methods (Teodoro et a1 ., 2001). 

There are many docking software available and most of these programs 

are free for public. One of the widely used programs is AutoDock. 
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AutoDock is an automated docking program of flexible ligands to 

receptors. It was developed by Olson's group in 1990 (Goodsell and Olson, 

1990). AutoDock uses free energy of the docking molecules using three- 

dimension potential-grids. The search algorithms implemented include 

Simulated Annealing (SA), Genetic Algorithm (GA) and Lamarckian GA 

(LGA) with GA + local search (LS) hybrid. The search and score method in 

~utoDock involves exploration of the configuration spaces available for 

interaction between ligand and receptor and it evaluates and ranks 

configurations using a scoring system which is the binding energy (Morris 

et al., 1998). 

In order to further understand the molecular basis of substrate specificity 

of B. stearothermophilus F1 protease, the following objectives were 

implemented in view of this research: 

1. To find the best substrate based on binding energes obtained from 

docking procedure 

2. To study the interaction of F1 protease with its substrates 

3. To validate results obtained through computational studies by 

experimental methods 
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CHAPTER 2 

LITERATURE REVIEW 

Proteases 

Proteases comprise two groups of enzymes, the endopeptidases and the 

exopeptidases. The exopeptidases act only near the ends of polypeptide 

chains at the N or C terminus while the endopeptidases act preferentially 

in the inner regions of peptide chains away from the N and C termini. 

These proteases are classdied according to their catalytic mechanisms. 

There are four mechanistic classes recognized by International Union of 

Biochemistry and Molecular Biology. They are serine proteases, cysteine 

proteases, aspartic proteases and metallo proteases (Rao et al., 1998). 

Serine proteases have been grouped into six distinct families of which the 

chymotrypsin-like clan and the subtilisin-like clan are the two largest 

family (Siezen and Leunissen, 1997). They have the same active site 

geometry and the catalysis proceeds via the same mechanism but the 

general three-dimensional structure is different in the two families. Three 

residues (histidine, aspartic acid and serine) that form the catalytic triad 

are essential in the catalytic process of the enzyme. © C
OPYRIG

HT U
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Plant proteases such as papain and bromelain are included in the cysteine 

proteases family. The essential cysteine and histidine residues play the 

same role as serine and histidine residues in serine proteases during the 

catalytic process. Most of aspartic proteases belong to the pepsin family. 

The pepsin family includes digestive enzymes such as pepsin and 

chymosin, fungal proteases and processing enzymes such as renin. A 

second family comprises viral proteases such as the proteases from the 

HIV also called retropepsin. Metallo proteases are found in bacteria, fungi 

as well as in higher organisms. They differ widely in their sequences but 

the great majority of enzymes contain a zinc atom which is catalytically 

active. In some cases, zinc may be replaced by another metal such as cobalt 

or nickel without loss of activity (Rao et al., 1998). 

2.1.1 Subtilisin-like serine protease 

Subtilisin-like serine proteases (EC 3.4.21.62), termed "subtilases" occur in 

archaea, bacteria, fungi, yeasts and higher eukaryotes. Based on sequence 

homology, a subdivision into six families is proposed (Siezen and 

Leunissen, 1997). They are subtilisin family, thermitase, proteinase K, 

lantibiotic peptidase, kexin and pyrolysin family. Subtilisins are enzymes 

that are secreted by members of the genus Bacillus with subgroups of true 

subtilisins, high-alkaline proteases and intracellular proteases. The 

reactions of subtilisin are hydrolysis of proteins with broad specificity for 

peptide bonds, and showed a preference for a large uncharged residue in 

5 
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