CHARACTERISATION OF EMERGING Campylobacter SPECIES FROM BROILER CHICKEN AND CHICKEN MEAT IN SELANGOR AND THEIR ANTIBIOTIC RESISTANCE

TEGUH SURANTA SINULINGGA

FPV 2014 24
CHARACTERISATION OF EMERGING *Campylobacter* SPECIES FROM BROILER CHICKEN AND CHICKEN MEAT IN SELANGOR AND THEIR ANTIBIOTIC RESISTANCE

By

TEGUH SURANTA SINULINGGA

MASTER OF VETERINARY SCIENCE
UNIVERSITY PUTRA MALAYSIA
2014
CHARACTERISATION OF EMERGING *Campylobacter* SPECIES FROM BROILER CHICKEN AND CHICKEN MEAT IN SELANGOR AND THEIR ANTIBIOTIC RESISTANCE

By

TEGUH SURANTA SINULINGGA

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Veterinary Science

May 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
This thesis is dedicated to my Mom and Dad, bang Agung and dek Wahyu
CHARACTERISATION OF EMERGING Campylobacter SPECIES FROM BROILER CHICKEN AND CHICKEN MEAT IN SELANGOR AND THEIR ANTIBIOTIC RESISTANCE

By
TEGUH SURANTA SINULINGGA

May 2014

Chairperson : Professor Saleha Abdul Aziz, PhD
Faculty : Veterinary Medicine

Campylobacters have been recognized as the most common bacteria causing gastroenteritis in humans. Campylobacter jejuni and C. coli are the most isolated species from animals and cases of human campylobacteriosis. However, the common isolation technique used in laboratories usually does not support the growth of other, potentially pathogenic non-jejuni, non-colı Campylobacter species. The application of an isolation technique such as the Cape Town protocol developed by Le Roux and Lastovica (1998) can lead to the isolation of other Campylobacter species. The members of these non-jejuni and non-colı Campylobacter species discovered are termed as emerging Campylobacter species due to increase in incidence in humans since its first introduction; they consisted of five species and have been recognized as important pathogens in humans and animals. In Malaysia, most of the studies were on isolated C. jejuni and C. coli and almost no study on isolated emerging Campylobacter species have been done. Thus, this present study was undertaken to determine the occurrence of emerging Campylobacter species in broiler chicken and chicken meat and their antibiotic resistance patterns.

Two hundred and ten cloacal swab samples were taken from broiler chickens from seven different farms within Selangor. The samples were subjected to Cape Town protocol which combines membrane filtration onto antibiotic free blood agar plates and incubated at 37°C in hydrogen enriched micro-aerobic atmosphere. Campylobacter were presumptively identified by biochemical tests and confirmed by using multiplex PCR. A hundred and seven of the chickens (50.9%) were positive for Campylobacter. Among the isolates, C. jejuni was the most isolated species (69.5%) followed by C. coli (16.2%). Campylobacter fetus and C. upsaliensis were the only emerging Campylobacter species isolated in this study, 11 (9.3%) and three isolates (2.5%) respectively. The prevalence of Campylobacter in broiler chicken raised in open house system farms were found higher (70%) compared to broiler chicken raised in close house system farms (3.3%). Close house system farms apply strict bio
security measure and hygiene practice that able to prevent *Campylobacter* transmission from environment to broiler flocks.

To determine the occurrence of emerging *Campylobacter* species in chicken meat, 109 chicken meat samples were collected from 11 wet markets and five supermarkets in Selangor. Thirty three samples (30.3%) were found positive for *Campylobacter*. Twenty of *Campylobacter*-positive isolates (60.6%) were identified as *C. jejuni*, while five isolates (15.1%) were *C. coli*. *Campylobacter fetus* was the only emerging *Campylobacter* species isolated in this study, at 24.3% or eight isolates. The prevalence of *Campylobacter* isolated from supermarkets was higher (68%) than those from wet markets (14.3%). This may happen due to the different way of displaying of chicken meat; where in the wet market, chicken meat were only displayed in room temperature that provokes *Campylobacter* to enter viable but non culturable (VBNF) condition that made them not able to be isolated by plating method used in this study.

An antibiotic susceptibility test was conducted to determine the antibiotic resistance pattern of these *Campylobacter* isolates. A total of 140 *Campylobacter* isolates were tested against 12 antibiotics by disc diffusion method. A total of 115 (97.4%) of *Campylobacter* isolated from broiler chicken and 33 (100%) of *Campylobacter* isolated from chicken meat were found resistant to one to ten antibiotics. In broiler chicken, more than 50% of *Campylobacter* isolates were found resistant to ampicillin, tetracycline, ciprofloxacin, nalidixic acid, enrofloxacin with the highest resistance was to nalidixic acid (79.6%) and the lowest resistance was to chloramphenicol (0.8%). In chicken meat, more than 50% of *Campylobacter* isolated from chicken meat were found resistant to trimethoprim/sulfamethoxazole, ampicillin, erythromycin, ciprofloxacin and nalidixic acid with the highest resistance was to ampicillin (87.8%) and the lowest resistance was to gentamicin (9.0%). Multidrug resistance (MDR) *Campylobacter* was observed in this study, 77.1% and 66.6% of *Campylobacter* isolated from broiler chicken and chicken meat respectively were resistant to three or more antibiotics.

Overall, the finding from this study indicated that Cape Town protocol is useful to isolate not only *C. jejuni* and *C. coli* but also other *Campylobacter* species. *Campylobacter jejuni* and *C. coli* were still dominant *Campylobacter* species in broiler chicken and chicken meat. Although the method is somewhat laborious, it however enables to isolate some emerging *Campylobacter* species (*C. fetus* and *C. upsaliensis*) which may cause the occurrence of diseases in humans. The public health significance of this study is the finding of other *Campylobacter* species in chickens and chicken meat that may cause gastroenteritis and other infections in humans and the presence of high MDR *Campylobacter* species which could compromise treatment in humans if required. Also from this study it is observed that there is a need to create awareness among farmers on the increase in antibiotic resistance and the prudent use of antibiotics in chickens among farmers.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Master Sains Veterinar

PENCIRIAN SPESIS Campylobacter MUNCUL DARIPADA AYAM PEDAGING DAN DAGING AYAM DI SELANGOR DAN KERINTANGAN ANTIBIOTIK

Oleh

TEGUH SURANTA SINULINGGA

Mei 2014

Pengerusi : Professor Saleha Abdul Aziz, PhD
Fakulti : Perubatan Veterinar

Dua ratus sepuluh sampel swab kloaka diambil dari ayam pedaging di tujuh ladang yang berbeza di Selangor. Sampel dikultur dengan menggunakan protokol Cape Town yang menggabungkan penapisan membran keatas agar darah tanpa antibiotik dan pengeraman pada suhu 37°C dalam suasana mikroaerobik yang diperkaya hidrogen. Campylobacter dikenalpasti dengan menggunakan ujian biokimia kemudian disahkan dengan menggunakan multipleks PCR. Satu ratus tujuh ayam (50.9%) adalah positif terhadap Campylobacter. Diantara isolat positif, C. jejuni adalah spesis yang paling kerap diaisigrant (69.5%) diikuti oleh C. coli (16.2%). Campylobacter fetus dan C. upsaliensis adalah spesis Campylobacter muncul yang berjaya diaisigrant dalam kajian ini, masing-masing sebanyak 11 isolat (9.3%) dan tiga isolat (2.5%). Ayam pedaging yang dibesarkan dalam sistem kandang terbuka didapati lebih tinggi (70%) terdedah kepada Campylobacter berbanding dengan ayam pedaging yang dibesarkan di ladang sistem kandang tertutup (3.3%). Ladang
sistem kandang tertututup menerapkan secara ketat langkah keselamatan bio dan amalan kebersihan yang dapat mencegah penyebaran _Campylobacter_ daripada persekitaran untuk ternakan ayam pedaging.

Untuk menentukan kehadiran spesis _Campylobacter_ muncul pada daging ayam, 109 sampel daging ayam diperoleh daripada 11 pasar basah dan lima pasar raya di Selangor. Tiga puluh tiga sampel daging ayam (30.3%) didapat positif terhadap _Campylobacter_. Dua puluh daripada isolat positif _Campylobacter_ (60.6%) dikenal pasti sebagai _C. jejuni_, manakala lima isolat (15.1%) adalah _C. coli_. _Campylobacter fetus_ merupakan satu-satunya spesis _Campylobacter_ muncul yang diasingkan dalam kajian ini yaitu sebanyak lapan isolat (24.3%). Kelaziman _Campylobacter_ terpencil daripada daging ayam yang dijual di pasar basah adalah lebih tinggi (68%) dibandingkan dengan daging ayam yang dijual di pasar raya (14.3%). Ini mungkin berlaku kerana cara yang berbeza memaparkan daging ayam; di mana di pasar basah, daging ayam hanya dipaparkan dalam suhu bilik yang menimbulkan _Campylobacter_ masuk pada keadaan berdaya maju tetapi tidak dapat diasingkan (VBNC) yang menjadikan mereka tidak berupaya untuk diasingkan dengan kaedah yang digunakan dalam kajian ini.

Ujian kerintangan antibiotik juga dijalankan untuk menentukan corak rintangan antibiotik _Campylobacter_ yang telah diasingkan. Sebanyak 140 _Campylobacter_ yang telah diasingkan pada kajian ini diuji untuk kerintangan antibiotik kepada 12 agen antibiotik dengan kaedah “disk diffusion”. Sebanyak 115 (97.4%) daripada _Campylobacter_ yang diasingkan daripada ayam pedaging dan 33 (100%) yang diasingkan daripada daging ayam didapati rintang terhadap 1-10 antibiotik. Pada ayam pedaging, lebih daripada 50 % daripada _Campylobacter_ yang diasingkan didapati rintang terhadap ampicillin, tetracycline, ciprofloxacin, asid nalidixik, enrofloxacim dengan rintangan yang paling tinggi adalah terhadap asid nalidixik (79.6 %) dan rintangan yang paling rendah adalah terhadap chloramphenicol (0.8%). Pada daging ayam, lebih daripada 50% daripada _Campylobacter_ didapati rintang terhadap trimethoprim/sulfamethoxazole, ampicillin, erythromycin, ciprofloxacin dan asid nalidixik dengan rintangan yang paling tinggi adalah terhadap ampicillin (87.8%) dan rintangan yang paling rendah adalah terhadap gentamicin (9.0%). Rintangan terhadap pelbagai antibiotik (MDR) pada _Campylobacter_ telah didapati dalam kajian ini, sebanyak 77.1 % dan 66.6% daripada _Campylobacter_ diasingkan daripada ayam pedaging dan daging ayam rintang terhadap tiga atau lebih antibiotik.

mengenai meningkatnya rintangan antibiotik dan amalan penggunaan antibiotik yang baik pada ayam.
ACKNOWLEDGEMENTS

First and above all, I praise Jesus Christ, the Lord almighty for providing me this opportunity and granting me the capability to proceed successfully.

My utmost appreciation and gratitude to Prof. Dr. Saleha Abdul Aziz, the chairman of Supervisory Committee for her guidance, advise, support and patience during the course of this study and the preparation of this thesis. I am sincerely thankful to my supervisory committee members, Assoc. Prof. Dr. Jalila Abu and Assoc. Prof. Dr. Zunita Zakaria for being generous with their time and helping me to smoothen the path way of this study.

I would like to thank the staff of Veterinary Public Health Laboratory, Faculty of Veterinary Medicine, UPM, Puan Fauziah Nordin for her contribution, advice and guidance. As well as to the staff of the Veterinary Bacteriology Laboratory Faculty of Veterinary Medicine, UPM, Ms. Krish, Mr Azri, Mr Hafiz, and Ms Ada for their kind assistance and cooperation, I am also thankful to the staff in University Veterinary Hospital, Mr Azrin and Uncle Velu for their help in providing horse blood for media preparation. I also would like to thank my lab mates (Soe-Soe, Atta, Tayzar, Faiz, Rashid, Yousif, Wint-Wint, Dauda, Emelia, Abdelrahman, and Jalo) who have shared their knowledge and experience as well as joy and sorrow during my research. My sincere thanks to all colleagues, staff of the faculty who contributed one way or another towards completion of my study.

Thanks are also extended to my close friends, Amin, Yu bin, TG, Senia, Zaid, and Sina, for the encouragement and the beautiful moment I shared with during my study. I am very grateful to have some Indonesian friends here who make me feel at home, I would like to show my gratitude to Eldo, mbak Imas, Azmi, Dina, Desita, Kang Yayat, and other PPI-UPM members for the warm friendship.

Deepest gratitude is also given to my family in Putera Aman Assembly, to all pastors (Ps Brian, Ps. Peter, Ps. Rachel, Ps. Emily and Ps. Israel) who always teach me to word of God so I can always depend on God in every way I take. And also to my cell group members: Anthony, Sharon, Cheryl, Rosalynn, Dawn, Wee Ling and Philip. Thank you for the great time and the togetherness.

Last but not least, deepest gratitude to my beloved parents, Nimbangsa Sinulingga and Maimunah, my brothers, Agung Basmantyo Sinulingga and Wahyu Christiana Sinulingga for their undying love and unconditional support throughout my life and my studies.

May God bless you always.

TEGUH SURANTA SINULINGGA
I certify that a Thesis Examination Committee has met on 26th June 2014 to conduct the final examination of Teguh Suranta Sinulingga on his thesis entitled “Antibiotic Resistance in Emerging Campylobacter Species Isolated from Broiler Chicken and Chicken Meat in Selangor” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Veterinary Science.

Members of the Thesis Examination Committee were as follows

Datuk Abdul Rani Bahaman, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Hassan Hj Mohd Daud, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Siti Khairani Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Sharifah Syed Hassan, PhD
Associate Professor
Jeffrey Cheah School of Medicine and Health Sciences
Monash University
(External Examiner)
Assoc. Prof. Noritah Omar, PhD
Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Veterinary Science. The members of Supervisory Committee were as follows:

Saleha Bt Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairperson)

Jalila Abu, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Zunita Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Bujang Bin Kim Huat, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _______________________ Signature: _______________________
Name of Chairperson of Supervisory Committee: ______________________
Name of Member of Supervisory Committee: ______________________

Signature: _______________________
Name of Member of Supervisory Committee: ______________________
TABLE OF CONTENTS

DEDICATION iii
ABSTRACT iv
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL x
DECLARATION xiii
LIST OF TABLES xvii
LIST OF FIGURES xviii

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 3
2.1 Campylobacter 3
2.1.1 Taxonomy and Microbiology 3
2.1.2 Emerging Campylobacter in humans and animals and their clinical importance 4
2.2 Sources of Infection and Modes of Transmission 7
2.2.1 Animals as Reservoirs of Campylobacter 7
2.2.2. Campylobacter Species in Foods 10
2.3 Antibiotic Resistance 13
2.4 Isolation and Identification 14
2.4.1 Conventional Methods 14
2.4.2 Genotypic Methods 16
2.5 Occurrence of Campylobacter species in Malaysia 18

3 OCCURRENCE OF EMERGING Campylobacter SPECIES IN BROILER CHICKEN AND CHICKEN MEAT 19
3.1 Introduction 19
3.2 Materials and Methods 20
3.2.1 Sample collection 20
3.2.2 Isolation methods 21
3.2.3 Identification of isolates 22
3.2.4 Species specific identification of Campylobacter 24
3.2.5 Data Analysis 26
3.3 Results 26
3.4 Discussion 31

4 ANTIBIOTIC RESISTANCE PATTERN OF Campylobacter ISOLATES 36
4.1 Introduction 36
4.2 Materials and Methods 36
4.3 Results 37
4.4 Discussion 45
SUMMARY, CONCLUSION AND
RECOMMENDATIONS FOR FUTURE RESEARCH 50
5.1 Summary and Conclusion 50
5.2 Recommendations for Future Research 52

BIBLIOGRAPHY 53
APPENDICES 77
BIODATA OF STUDENT 91
PUBLICATION 92
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Emerging Campylobacter species</td>
</tr>
<tr>
<td>2.2</td>
<td>Phenotypic and biochemical characteristic of Campylobacter species of clinical significance</td>
</tr>
<tr>
<td>3.1</td>
<td>Location and Type of Markets Sampled</td>
</tr>
<tr>
<td>3.2</td>
<td>Oligonucleotide primers and expected size</td>
</tr>
<tr>
<td>3.3</td>
<td>Description of chicken farms sampled</td>
</tr>
<tr>
<td>3.4</td>
<td>Occurrence of Campylobacter species in broiler chicken in seven farms</td>
</tr>
<tr>
<td>3.5</td>
<td>Number of Campylobacter species isolated from broiler chickens by H₂-enriched microaerobic condition and microaerobic condition</td>
</tr>
<tr>
<td>3.6</td>
<td>Prevalence of Campylobacter species in chicken meat in 11 wet markets and five supermarkets</td>
</tr>
<tr>
<td>3.7</td>
<td>Number of Campylobacter species isolated from chicken meat by H₂-enriched microaerobic condition and microaerobic condition</td>
</tr>
<tr>
<td>4.1</td>
<td>Breakpoints of the disk diffusion method used to determine antimicrobial susceptibility of Campylobacter isolates</td>
</tr>
<tr>
<td>4.2</td>
<td>Antibiotics resistance of Campylobacter jejuni, C. coli, C. fetus and C. upsaliensis isolated from broiler chicken</td>
</tr>
<tr>
<td>4.3</td>
<td>Antibiotics resistance of Campylobacter jejuni, C. coli, and C. fetus isolated from chicken meat</td>
</tr>
<tr>
<td>4.4</td>
<td>Antibiogram of Campylobacter species isolated from broiler chicken</td>
</tr>
<tr>
<td>4.5</td>
<td>Antibiogram of Campylobacter species isolated from chicken meat</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Location of broiler farms sampled; Farm 1 located in Serdang, farm 2 located in tanjung Sepat, farm 3 located in Banting, farm 4 and 5 located in Kuang, farm 6 located in Semenyih and farm 7 located in Kuala Selangor</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Filtration of the sample through 0.6 µm membrane filter (Schleicher & Schunell, ME26) onto Tryptose blood agar plate (Oxoid) added with 10% defibrinated horse blood</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Homogenate of chicken meat and Bolton broth (Oxoid)were incubated under microaerobic atmosphere (CampyGen gas pack, Oxoid CN0025A) at 37 °C for 24 hours</td>
<td>23</td>
</tr>
<tr>
<td>3.4</td>
<td>the morphology of Campylobacter colonies are mostly small, round, and buff color or dirty yellow</td>
<td>24</td>
</tr>
<tr>
<td>3.5</td>
<td>Cellular morphology of members of Campylobacter are gram negative, spiral, curve or rod shaped</td>
<td>24</td>
</tr>
<tr>
<td>3.6</td>
<td>Open house system broiler farm. Chicken feed and water are given manually, the wall barrier were wire net or bamboo, biosecurity and hygiene practices in the farms were low</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Close house system broiler farm. Chicken feed and water are given automatically, the wall barrier concrete or special plastic material, biosecurity and hygiene practices in the farms were high</td>
<td>29</td>
</tr>
<tr>
<td>3.8</td>
<td>Multiplex PCR for Campylobacter species</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Multidrug resistance (MDR) pattern of Campylobacter isolates</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of antibiotic resistant Campylobacter species isolated from broiler chicken in farms</td>
<td>44</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Campylobacter species are one of the leading causes of zoonotic enteric infections in developed and developing countries and the incidence are reported to be increasing (Anonymous, 2000). The majority of incidence occurs sporadically and the highest risk is associated with consumption of poultry, contact with infected animals, drinking contaminated water or travel (Everest and Ketley, 2001).

Campylobacter jejuni is the most frequently studied member of the *Campylobacter* genus followed by *C. coli* and both organisms are zoonotic, causing infections in human. There are also a number of other *Campylobacter* species of relevance in human diseases (Crushell et al., 2004). However, the role of *Campylobacter* species other than *C. jejuni* and *C. coli* in clinical diseases in human are far less well understood; this is because relatively few strains of these organisms have been isolated and not all laboratories use the same method to detect these species (Anonymous, 2000; Lastovica, 2006). Furthermore, current laboratory methods usually allow only the growth of *C. jejuni* and *C. coli* and not other *Campylobacter* species. Most diagnostic laboratories use 42 °C as primary incubation temperature, which is suitable for *C. jejuni* and *C. coli* but not other species, such as *C. fetus* or *C. hyointestinalis*, which grow at 37 °C (Lastovica, 2006). The usage of antibiotics in the formulation of the selective media may also inhibit the growth of some *Campylobacter* species (Corry et al., 1995).

One method that is currently used for isolation of almost all known species of *Campylobacter* is the Cape Town protocol (Diegaardt et al., 2003). It uses filtration through a membrane filter onto antibiotic free blood agar plate and subsequent incubation at 37 °C in hydrogen enriched microaerobic atmosphere. It was reported that culture positive for *Campylobacter* in faeces rose to 21.8% after implementation of this protocol (Lastovica, 2006). However, to date there is no standard method for isolation of *Campylobacter* species from food or faecal samples.

Campylobacter species are frequently found in many domestic and wild mammalian, including cattle, swine, goats, horses, dogs, cats, and rodents, and avian species, including poultry and birds (Man, 2011). *Campylobacter* have also been isolated from marine animals such as shellfish and dolphins. Among all these animals, poultry is considered as the main reservoir of *Campylobacter*. The prevalence of *Campylobacter* in poultry may vary according to age and the type of farm. *Campylobacter* are rarely detected in broiler chicken less than 2-3 weeks old and in those raised in close house system (Sahin et al., 2002). Once a broiler chicken becomes infected, *Campylobacter* spread rapidly to other broiler chickens in that flock, which remain colonized up to slaughter age. In processing plant, such colonized chickens may cause carcass contamination during processing (Jacobs-Reitsma et al., 1994).
Up to 100% broiler chickens brought to the slaughter houses may harbour *Campylobacter* (Jacobs-Reitsma et al., 1994). The contaminated chicken meat acts as a potential risk of campylobacteriosis in human. According to European Food Safety Authority (2010), 20 – 30% of human cases of campylobacteriosis may be associated with handling, preparation and consumption of chicken meat. *Campylobacter* are able to survive on soiled food contact and even some clean surfaces for more than 4 hours at 27°C and 60 – 62% relative humidity (De Cesare et al., 2003); they can remain viable at -20 and -70°C and are able to replicate at 4°C (Lee et al., 1998).

Rapid increases in the proportion of *Campylobacter* resistance to antibiotics have been reported in many countries worldwide. The improper usage of antibiotics in food animals is one of the possible ways that can lead to the increase in antibiotic resistance. *Campylobacter* have been reported resistant to a number of antibiotics including ciprofloxacin and other fluoroquinolones, macrolides and lincosamides, chloramphenicol, aminoglycosides, tetracyclines, ampicillins and other β-lactams, cotrimoxazole, and tylosin (Padungton and Kaneene, 2003; Moore et al., 2006).

According to Woolhouse (2002), emerging pathogen can be defined as an organism which show increasing incidence following its first introduction into a new host population. In this case, there is an increasing number of *Campylobacter* species other than *C. jejuni* and *C. coli* that have been recognized as human and animal pathogens. For instance, *C. upsaliensis* and *C. concisus* are now recognized causing diarrhoea and intestinal inflammation in humans (Patton et al., 1988; Bourke, 1998; Labarca, 2002; Man, 2011), and *C. rectus* is considered to be associated with human periodontal disease (Rams et al., 1993). These *Campylobacter* species are termed as emerging *Campylobacter* species.

In Malaysia, most of studies on *Campylobacter* practice the common isolation techniques which are mainly able to isolate *C. jejuni* and *C. coli*. However they were not able to detect the presence of other *Campylobacter* species including emerging *Campylobacter* species. The improper use of antibiotics in farm animals still occurs until today. Therefore, the hypotheses of this study were:

1. There is the presence of emerging *Campylobacter* in broiler chicken and chicken meat.

2. The occurrence of antibiotic resistant in *Campylobacter* isolated from broiler chickens and chicken meat is high.

The objectives of this study were:

1. To determine the occurrence of emerging *Campylobacter* in broiler chickens and chicken meat

2. To determine the species *Campylobacter* isolated

3. To determine the antibiotic resistant pattern of the emerging and common *Campylobacter* species isolates
BIBLIOGRAPHY

Benjamin, J., Leaper, S., Owen, R. J. and Skirrow, M. B. 1983. Description of *Campylobacter laridis*, a new species comprising the Nalidixic Acid Resistant Campylobacter (NARTC) group. *Current Microbiology* 8:231-238.

Clinical and Laboratory Standards Institute. 2010. Performance standards for antimicrobial susceptibility testing: twentieth information Supplement M100-S20 Wayne, PA. USA.

Herman, L., Heyndrickx, M., Grijspereyt, K., Vanderkerchove, D., Rollier, I. and DeZutter, L. 2003. Routes for Campylobacter contamination of poultry meat:
epidemiological study from hatchery to slaughterhouse. *Epidemiology and Infection* 131:1169–1180.

Misawa, N., Shinohara, S., Sato, H., Ito, H., Shinohara, K., Shinomura, K., Kondo, F. and Ito, K. 2000. Isolation of Campylobacter species from zoo animals and...
polymerase chain reaction-based random amplified polymorphism DNA analysis. *Veterinary Microbiology* 71: 59-68

Park, S. F. 2002. The physiology of *Campylobacter* species and its relevance to their role as foodborne pathogens. *International Journal of Food Microbiology* 74:177-188.

Schonberg-Norio, D., Hanninen, M. L., Katila, M. L., Kaukoranta, S. S., Ksokela, M.,
Eerola, E., Uksila, J., Pajarre, S. and Rautelin, H. 2006. Activities of
telothromycin, erythromycin, fluoroquinolones, and doxycycline against
Campylobacter strain isolated from Finnish subjects. *Antimicrobial Agents and
Chemotherapy* 50:1086-1088.

Sensale, M., Cuomo, A., Dipineto, L., Santaniello, A., Calabria, M., Menna, L. C. and
Fioretti, A. 2006. Survey of *Campylobacter jejuni* and *Campylobacter coli* in
different taxa and ecological guilds of migratory birds. *Italian Journal of Animal

Skirrow, M. B. 2006. John McFadyean and Cetenary of the first isolation of
Campylobacter species. *Clinical Infectious Diseases* 43:1213-1217.

Speer, B. S., Shoemaker, N. B. and Salyer, A. A. 1992. Bacterial resistant to
tetracycline: mechanisms, transfer, and clinical significance. *Clinical
Microbiology Reviews* 5:387-399.

Campylobacter helveticus sp. nov., a new thermophillic species from domestic
animals: characterization, and cloning of a species-specific DNA probe. *Journal
of Genetic Microbiology* 138:2293-2303.

Stanley, K.N., Wallace, J.S., Currie, J.E., Diggle, P.J. and Jones, K. 1998a. The Seasonal
Variation of Thermophillic Campylobacters in Beef Cattle, Dairy Cattle, and

Stanley, K.N., Wallace, J.S., Currie, J.E., Diggle, P.J. and Jones, K. 1998b. Seasonal
variation of thermophilic campylobacters in lambs at slaughter. *Journal of
Applied Microbiology* 84:1111–1116.

Stanley, K. N. and Jones, K. 2003. Cattle and sheep farm as reservoirs for
Campylobacter. *Journal of Applied Microbiology* 94:104S-113S.

Steinhauserova, I., Ceskova, J., Fojtikova, K. and Obrovska, I. 2001. Identification of
thermophilic *Campylobacter* spp. by phenotypic and molecular methods. *Journal
of Applied Microbiology* 90:470-475.

of *Campylobacter upsaliensis* in dogs and cats. *Letters in Applied Microbiology*
31:209-212.

Tambur, Z., Stojanov, I., Konstantinovic, S., Jovanovic, D., Cenic-Milosevic, D. and
Opacic, D. 2010. Multi drug resistance of *Campylobacter jejuni* and
Campylobacter coli to tested antibiotics in strains originating from humans,

Vandamme, P., Daneshvar, M. I., Dewhirst, F. E., Paster, B. J., Kersters, K., Goossens, H. and Moss, W. 1995. Chemotaxonomic analyses of Bacteroides gracilis and
Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. International Journal of Systemic Bacteriology 45:145-152.

Whyte, P., McGill, K., Cowley, D., Madden, R. H., Moran, L., Scates, P., Carroll, C., O’Leary, A., Fanning, S., Collins, J. D., McNamara, E., Moore, J. E. and

