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The incipient instability in gas fluidized bed has not been fully understood despite 

extensive studies were conducted. A new transient theory was proposed by adopting 

the principles advanced by Tan and Thorpe (1992 and 1996) and Tan et al. (2003), 

and this was verified by computational fluid dynamic (CFD) simulations. The theory 

of instability in porous media has two functions. One involved the molecular 

diffusion of a microscopic mass flux in the gas phase with potential adverse density 

gradient, buoyancy convection in gas will occur, but the solid particles will 

stationary. If t he s olid p articles w ere subjected t o v ery high m ass fluxes which i s 

characterized by its high gas velocity such as those exceeding the minimum velocity 

of fluidization, then the buoyancy force o f t he p articles will b e o vercome and the 

solids will be moved and fluidized almost instantaneously. 
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2D time dependent simulations were conducted using a CFD package - FLUENT for 

gas diffusion in porous media to observe buoyancy convection and also the incipient 

instability in fluidized bed, using various gas pairs, mass fluxes and particles sizes. 

The simulation conducted was validated and verified by comparison with the 

experimental data from literature. As a prelude to these studies, transient convection 

induced by gas diffusion in another gas was conducted, so as to understand fully the 

instability induced by mass diffusion. The simulated critical Rayleigh number were 

found to be 531 and 707 for top-down and bottom-up gas-gas diffusion respectively, 

which were very close to the theoretical value of 669 and 817. For transient 

buoyancy instability induced by gas diffusion in porous media, the average simulated 

critical Rayleigh number was found to be 26.7, which agreed very well with the 

theoretical value of 27.1. The simulated onset time of buoyancy convection were also 

found to be in good agreement with the predicted value. Incipient instability in 

fluidized bed is caused by fluid velocity higher than the minimum fluidization 

velocity, U,f. The simulations of incipient instability showed that the bed behavior 

was dependent on the fluid velocity and the particle size and porosity. The incipient 

instability was preceded by the gas or pressure saturation of the interstices, induced a 

high momentum force due to the high mass flux which mobilized and lifted the 

particles once the critical Rayleigh number was exceeded. The simulated critical 

Rayleigh number was found to be 30.4, which agreed with the theoretical value of 

27.1 for b uoyancy instability i n  p orous m edia. The simulated critical t imes o f t he 

incipient instability in fluidized bed were in good agreement with the predicted 

values and reported experiments in literature. The bed pressure drop, expansion ratio 

and void fraction after the fluidization were successfully simulated and were found to 

be in good agreement with experiments and theoretical values. 
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Pengerusi: Profesor Madya Tan Ka Kheng, Ph.D. 

Fakulti: Kejuruteraan 

Ketakstabilan incipien dalam turns terbendalir gas masih belum difahami sepenuhnya 

walaupun banyak pengajian telah dijalankan. Satu theori transient barn dicadangkan 

dengan merujuk kepada dasar-dasar yang dimajukan oleh Tan dan Thorpe (1992 dan 

1996) dan Tan et al. (2003), dan ini telah pun dikenal-pasti dengan simulasi 

komputasi bendalir dinamik (CFD). Theori ketakstabilan dalam poros media ini ada 

dua fungsi. Satu melibatkan resapan molekular yang disebabkan oleh flux jisim 

mikroskopik dalam fasa gas dengan kecerunan ketumpatan lawanan potensi, 

perolakan pengapungan akan berlaku dalam gas, tetapi butiran pepejal tetap tidak 

bergerak. Jikalau butiran pepajal itu dikenalkan kepada flux jisim yang sangat tinggi 

yang disifatkan oleh kelajuan gasnya yang tinggi seperti yang mana melebihi 

kelajuan pengbendaliran minimum, maka kuasa pengapungan butiran itu akan diatasi 

dan pepejal pun digerakkan dan dibendalirkan pada masa yang sangat singkat. 
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Simulasi 2D ketakrnantapan telah dilakukan dengan menggunakan CFD- FLUENT 

untuk resapan gas dalam poros media untuk memperhatikan perolakan pengapungan 

dan juga untuk ketakstabilan insipien dalam turus terbendalir gas, dengan 

menggunakan bermacam-macam pasangan gas, flux jisim dan siaz butiran pepejal. 

Sebagai perrnulaan untuk pengajian ini, perolakan transien yang disebabkan oleh 

diffusi gas ke dalam gas lain telah dikaji, untuk memahami ketakstabilan yang 

disebabkan oleh diffusi gas dengan lebih jelas. Nombor Rayleigh kritikal daripada 

simulasi didapati bemilai 53 1 dan 707 masing-masing untuk bawah-keatas dan atas- 

kebawah resapan gas-gas, dimana ia adalah sangat dekat dengan nilai theori 669 dan 

8 17 masing-masing. Untuk ketakstabilan pengapungan transien yang disebabkan 

oleh diffusi gas dalam poros media, purata nombor Rayleigh kritikal yang 

disimulasikan bemilai 26.7, dimana ia bersetuju dengan nilai theori 27.1. Masa 

perrnulaan perolakan pengapungan juga didapati bersetuju dengan nilai theori. 

Ketakstabilan incipien dalam turns terbendalir gas disebabkan oleh kelajuan bendalir 

yang lebih tinggi daripada kelajuan terbendalir minima, Umf. Simulasi ketakstabilan 

insipien menunjulkan bahawa sifat turns itu adalah bergantung dengan kelajuan 

bendalir dan siaz butiran dan keruangan. Ketakstabilan insipien ini didahului oleh 

pengepuan mang-rnang kosong dalam bed oleh gas, menyediakan satu kuasa 

momentum tinggi disebabkan oleh flux jisim besar dirnana butiran pepejal itu akan 

digerakkan apabila nombor Rayleigh kritikal telah dilebihi. Nombor Rayleigh 

kritikal didapati bernilai 30.4, dimana bersetuju dengan nilai theori 27.1 dalam 

ketakstabian pengapungan dalam poros media. Masa simulasi kritikal untuk 

perrnulaan ketakstabilan adalah persetuju dengan nilai ramalan d m  yang dilaporkan 

dalam gajian lain. 
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CHAPTER 1 

INTRODUCTION 

Fluidized bed is one of the most common encounter operation units in chemical 

industry. Fluidized bed has been widely used in the process industries such as protein 

purification process, submerged oxidation, anaerobic wastewater treatment systems, 

hydro-carbon cracking and re-forming (Chase, 1994, Perry, 1997) to enhance the 

mass and heat transfer. 

The instability of the gas-solid fluidized bed is a very complex mechanism. This is 

owing to the heterogeneous structure of the bed and the existence of the rising 

bubbles within the column. The occurrence of fluidization is dependent on the flow 

velocity, which must be in excess of the buoyancy force of the particles. This 

minimum fluidization velocity can only estimated roughly from experiments, which 

Grace (2000) show that the design of the fluidized bed is quite empirical. Many 

studies have been devoted to understand the instability of the gas fluidized bed. 

Theoretical frameworks to characterize the instability of the bed also had been 

proposed s uch a s b y Jackson ( 1963), Jackson and Anderson ( 1969) and B atchelor 

(1988), which were recently reviewed by Sundaseran (2003). Unfortunately, until 

now the origin of the instability is not well understood. This suggested that this 

instability of the fluidized bed shall be restudy from other new approach, such as the 

perturbation theory by Lord Rayleigh which is also looking into the instability of a 

system. 
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Buoyancy convection induced by heat or mass diffusion is a simple instability 

phenomenon owing to its nature physic. The onset of buoyancy convection is driven 

by the adverse density gradient (Rayleigh 1916). Lapwood (1 948) examined the 

onset of convective instability in a homogenous porous media by conducting linear 

stability analysis (LSA). Lapwood ( 1948) p rovided a c riteria, R ayleigh number t o  

predict the onset time for the onset of convective instability in porous media. If a 

microscopic mass flux is subjected and hence induced a molecular difhsion to the 

porous media with potential adverse density gradient, buoyancy convection in the 

fluid phase will occur but the solid remain stationary. On the other hand if high mass 

fluxes with high fluid velocity is subjected to the porous media and overcome the 

buoyancy force of the solid particles, the particles will be mobilized almost 

instantaneously, which exactly what happen during the onset of fluidization. Due to 

the different driving force in the onset of fluidization compared with convective 

instability, hence the instability study by Lapwood is modified accordingly to be 

applicable in the onset of fluidization. This was done by incorporating Umf function 

into the Lapwood (948) instability study. There has been a strong current in the 

instability studies i nduced b y m ass d iffision, b ut b reakthrough w as o nly achieved 

recently by Tan and Thorpe (1992, 1996) and Tan et al. (2003). 

The research problem is to study the onset of incipient instability in fluidized bed by 

adopting the transient instability theory, which is a new approach in the study of 

fluidized bed instability. As discussed above, the onset of instability in porous media 

under high mass flux showed the same behavior of the incipient instability in 

fluidized bed. Hence, it is believed that the incipient instability in fluidized bed can 

be described by the transient instability theory concept to certain extends. 
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The objectives of this study are: 

1. To develop and propose a theory to determine the onset of incipient instability in 

fluidized bed. 

2. Verification of the theory by comparison with the literature experimental data. 

3. Conduct simulation and verify the simulated result against literature experimental 

data for further discussion. 

In order to achieve above objectives, the scope in this study were identified as follow: 

1. The instability analysis in porous media conducted by Lapwood (1948) will be 

explored and exploited to investigate and predict the onset of the incipient 

instability in gas fluidized bed. 

2. Transient instability in gas system induced by other gas diffusion will be studied 

as well, as the prelude to the porous media geometry and for better understanding 

of the transient instability induced by transient mass diffusion. 

3. Verification of the transient instability theory for gas-solid fluidized bed by 

comparison of the prediction value with published experimental results. 

4 . 2D time dependent simulations will be conducted. The important parameters such 

as the onset time of instability, size of the convection plumes and bed pressure 

drop obtained in the simulations will be investigated. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The mechanisms underlying the incipient fluidization are poorly understood, despite 

its importance in the various process industries. This is owing to the very complex 

particle-particle and particle-fluid interactions. Despite its difficulties, the instability 

of the fluidized bed has been studied extensively but its mechanisms remain to be 

explained. The occurrence of fluidization is dependent on the flow velocity, which 

must be in excess of the buoyancy force of the particles. There is no successful 

theory of fluidization for the prediction of the onset of instability. In this study, the 

incipient instability of fluidization is found to be related to mass diffusion in porous 

media. 

Lapwood (1948) had conducted linear stability analysis (LSA) to study the thermal 

instability in porous medium induced by steady-state heat conduction, he assumed 

the porous media to be a homogenous fluid, which will move at the onset of 

instability. This is an analog for the buoyancy convection induced by transient mass 

diffusion in porous media, expect that the solid is impermeable to the gas. If a 

microscopic mass flux is used which induced molecular diffusion and adverse 

density gradient is encountered, buoyancy convection will happen in the porous 

media. If a very high mass flux which is characterized by its high velocity is 

subjected to the porous media, the particles may be mobilized and moved almost 

instantaneously, which is exactly observed in the gas fluidized bed. This suggested 
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