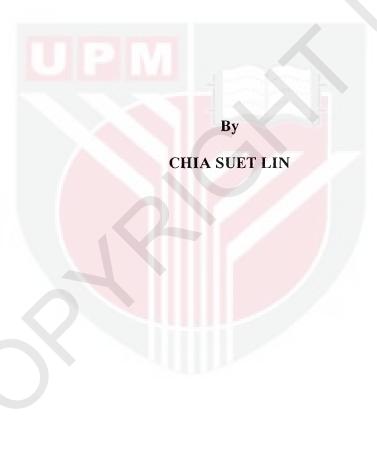


UNIVERSITI PUTRA MALAYSIA


STRUCTURAL ANALYSIS OF APEPTIDE (CTLTTKLYC) THAT INTERACTS WITH NEWCASTLE DISEASE VIRUS

CHIA SUET LIN.

FBSB 2005 22

STRUCTURAL ANALYSIS OF A PEPTIDE (CTLTTKLYC) THAT INTERACTS WITH NEWCASTLE DISEASE VIRUS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

STRUCTURAL ANALYSIS OF A PEPTIDE (CTLTTKLYC) THAT INTERACTS WITH NEWCASTLE DISEASE VIRUS

By

CHIA SUET LIN

June 2005

Chairperson: Professor Datin Khatijah Yusoff, PhD

Faculty: Biotechnology and Biomolecular Sciences

A peptide with the sequence Cys-Thr-Leu-Thr-Thr-Lys-Leu-Tyr-Cys (CTLTTKLYC) has previously been identified to inhibit the propagation of Newcastle disease virus (NDV) in embryonated chicken eggs and tissue culture. It has two different dissociation constants (K_d^{rel}), in which the first constant can be used as a determinant to classify NDV strains into two groups: the velogenic strains in the first group, whereas the mesogenic and lentogenic strains are in the second group. The peptide, C¹T²L³T⁴T⁵K⁶L⁷Y⁸C⁹, displayed on the pIII protein of a filamentous M13 phage was mutated by oligonucleotide-directed mutagenesis in order to identify the amino acid residues involved in the interactions with NDV. Mutations of Cys at first position (C¹) and Lys at the sixth position of the peptide (K⁶) to Ala (A), which produced mutants C¹A and K⁶A, did not affect the binding between the peptide and the virus significantly, but substitution of Tyr at eighth position (Y⁸) alone with Ala (A) dramatically reduced the interaction. This suggests that Y⁸ could play an important role in the peptide-virus interaction. Double mutations were carried out on K⁶ and Y⁸ to produce mutants K⁶A-Y⁸A, K⁶R-Y⁸A, K⁶R-Y⁸F, and K⁶R-Y⁸F, to determine

whether the mutated amino acids could improve the binding capability. However, the mutations did not improve the binding capability significantly.

Fmoc-solid phase peptide synthesis was employed to synthesize the peptide, CTLTTKLYC. Crude peptide was purified with HPLC and analysed with a mass spectrometer. The secondary structure of the peptide was analysed with circular dichroism (CD) and the three dimensional conformation of the peptide was determined by nuclear magnetic resonance (NMR) and molecular modelling. A mixture conformation of β -turn and β -sheet (intermolecular interaction) was observed for the linear peptide by using CD. However, the three-dimensional structure of the linear peptide could not be arrived due to the mixture of conformation which made the sequence assignment of NMR extremely difficult. On the other hand, the disulfide-constrained cyclic peptide, which has a more rigid structure, exhibited only a β -turn structure. Two models were obtained: one of it consists of a β -turn and a distorted β -turn, while the other structure is an extended structure.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGANALISAAN STRUKTUR PEPTIDA (CTLTTKLYC) YANG BERINTERAKSI DENGAN VIRUS PENYAKIT SAMPAR AYAM

Oleh

CHIA SUET LIN

Jun 2005

Pengerusi: Profesor Datin Khatijah Yusoff, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Peptida dengan jujukan Cys-Thr-Leu-Thr-Thr-Lys-Leu-Tyr-Cys (CTLTTKLYC) telah dikenalpasti sebagai perencat untuk pembiakan virus penyakit sampar ayam (NDV) dalam telur ayam yang berembrio dan juga kultur tisu. Ia mempunyai dua pemalar pengasingan (K_d^{rel}) di mana pemalar yang pertama boleh digunakan sebagai penentu untuk mengasingkan strain NDV kepada dua kumpulan: kumpulan pertama adalah strain velogenik manakala kumpulan kedua merupakan strain mesogenik dan juga lentogenik. Peptida berjujukan C¹T²L³T⁴T⁵K⁶L⁷Y⁸C⁹ yang dipaparkan pada protein pIII faj M13 telah dimutasikan dengan menggunakan teknik mutagenesis oligonukleotida. Ini adalah untuk mengenalpastikan residu asid amino yang memainkan peranan yang penting dalam interaksi antara peptida dan NDV. Mutasi pada Cys pada posisi pertama (C¹) dan Lys pada posisi keenam (K⁶) kepada Ala (A) tidak mempengaruhi interaksi di antara peptida dan NDV manakala penggantian Tyr pada posisi kelapan (Y⁸) kepada Ala (A) pula mengurangkan interaksi tersebut secara mendadak. Keadaan ini mencadangkan bahawa Y⁸ mungkin memainkan peranan yang penting dalam interaksi antara peptida dan NDV. Mutasi berganda telah dijalankan pada K⁶ danY⁸ untuk menghasilkan mutasi K⁶A-Y⁸A, K⁶R-Y⁸A, K⁶A-

Y⁸F, dan K⁶R-Y⁸F bagi mengenalpastikan sama ada mutasi asid amino ini dapat meningkatkan interaksi tersebut. Keputusan yang didapati menunjukkan bahawa mutasi berganda tidak berkesan dalam meningkatkan interaksi antara peptida and NDV.

Sintesis peptida secara fasa pejal Fmoc telah digunakan untuk mensintesiskan peptida. Peptida kasar telah ditulenkan dengan menggunakan HPLC dan dianalisiskan dengan menggunakan spektrometer jisim. Struktur dua dimensi peptida ditentukan dengan menggunakan "circular dichroism" (CD) terlebih dahulu dan struktur tiga dimensi peptida pula dikenalpastikan dengan menggunakan resonan magnetik nuclear (NMR), dan pemodelan molekul. Berdasarkan data yang diperolehi daripada CD, peptida yang linear menunjukkan campuran struktur β-pusingan dan juga kepingan-β (interaksi antara molekul). Walau bagaimanapun, struktur tiga dimensi peptida yang linear ini tidak dapat dikenalpastikan kerana campuran keduadua struktur tersebut telah menyebabkan analisis jujukan NMR sangat sukar. Peptida siklik yang dikekangkan oleh ikatan dwisulfida mempunyai struktur yang lebih tegap dan ia hanya menunjukkan struktur pusingan-β. Terdapat dua model yang diperolehi daripada analisis pemodelan molekul: satu daripadanya mempunyai satu pusingan-β dan satu pusingan-\beta yang tidak sempurna manakala struktur yang lain pula mempunyai struktur yang longgar.

ACKNOWLEDGEMENT

There are endless numbers of people that I would like to express my deepest appreciation. They have not only given me the physical support in completing the experiments but also their moral support and sincere caring.

My first thanks will go to none other than my most wonderful supervisors:

Prof. Datin Dr. Khatijah Yusoff, for believing in me in whatever that I am doing, giving me all the support, either physically or mentally, and most importantly giving me a chance to be a student under her supervision; Assoc. Prof. Dr. Tan Wen Siang, a passionate scientist, for his valuable comments, thoughtful discussions, and useful suggestions throughout the research and thesis writing; Assoc. Prof. Dr. Khozirah Shaari, for her valuable knowledge and time in helping me to appreciate the beauty of Nuclear Magnetic Resonance (NMR), as well as endless support in interpretation of the spectra.

I would also like to convey my deepest gratitude to Asst. Prof. Dr. Seetharama D. S. Jois, in the Department of Pharmacy, National University of Singapore, for helping me derive the peptide structure by using NMR and also molecular modelling. This project will not be successful without his unconditional guidance and help. Not forgetting the most generous staff and students in the department, Jining, Siew Eng, Lau, Wai See etc. for helping me in handling machine, spectrum analysis, and thoughtful suggestions.

Special thanks to **Prof. Dr. Noorsaadah Abdul Rahman**, in the Department of Chemistry, University Malaya, for teaching and guiding me during the process of peptide synthesis.

Of course, I would also like to convey my deepest appreciation to Swee Tin and Chiew Ling, who have been sisters to me, for guiding me, supporting me, and also helping me throughout the project. Not forgetting, all the members in the Virology Laboratories of the Faculty of Biotechnology and Biomolecular Sciences, Dr. Majid, Geok Hun, Thong Chuan, Suhana, Lalita, Zul, Onie, Rafidah, Nazreen, Kah Fai, Andrew, Wawa, Taznim, Budy, and Mukrish, who have been giving me a lot of supports and happy memory in the laboratories. These thanks would also go to all the staff members in the Department of Microbiology and Biochemistry, Encik Hussein, Ibrahim, Shamsudin, Burhannudin, Khalid, Puan Rosema, Long, Yati, Su, Helen, and Kamariah.

I wish to express my deepest thanks to my parents, brothers and sisters for their unconditional love and support. I would also like to thank my dearest roommate, Douglas, who always there to listen to my complaints, happiness and sadness.

Finally, I would like to thank the Ministry of Science, Technology and Innovation of Malaysia for providing me the National Science Fellowship.

TABLE OF CONTENTS

				Page	
ABST	RACT			ii	
ABST	ABSTRAK				
ACKNOWLEDGEMENTS					
APPR	OVAL			ix	
DECL	ARAT	ION		X	
LIST (OF TA	BLES		xiii	
LIST (OF FIG	URES		xiv	
LIST (OF AB	BREVL	ATIONS	xvi	
CHAI	PTER				
1.	INTR	ODUCT	CION	1	
2.	LITE	RATUR	E REVIEW	5	
	2.1	Newca	astle Disease	5	
		2.1.1	Newcastle Disease Virus (NDV)	5	
		2.1.2	NDV Infection	10	
		2.1.3	Anti-Viral Peptide	11	
	2.2	Mutag		12	
	2.3		Phase Peptide Synthesis (SPPS)	14	
			Concept of SPPS	15	
			Linker-Resin	16	
			N-α Protection and Deprotection	17	
			Coupling Step	18	
			Side Chain Protecting Groups	19	
			Cleavage Reaction	20	
		2.3.7	Peptide Purification	21	
			2.3.7.1 High Performance Liquid Chromatography	21	
			2.3.7.2 Mass Spectrometry	23	
	2.4		rmation Studies of Peptides	25	
		2.4.1	Circular Dichroism (CD) Spectrometry	26	
		2.4.2	· / 1	28	
			2.4.2.1 Principles of NMR	28	
			2.4.2.2 Biomolecular NMR	30	
		2.4.3	Molecular Modelling	34	
3.	MATERIALS AND METHODS			36 36	
	3.1	Chemicals and Reagents			
	3.2		Propagation and Purification	36	
		3.2.1		36	
		3.2.2	1 5	37	
			3.2.2.1 Phage Titration	37	
			3.2.2.2 Large Scale Preparation of Phage	37	
			3.2.2.3 Partial Purification of Phage	38	
	3.3	ssDN	A Extraction and Purification	39	

	3.4	ssDNA Sequencing	39
	3.5 Preparation of Competent Cells		40
	3.6	Site-Directed Mutagenesis	41
	3.0	<u> </u>	41
		3.6.1 Generation of Uracil-Containing ssDNA	
		3.6.2 Oligonucleotide-Directed Mutagenesis	41
		3.6.3 Transfection	43
	2.7	3.6.4 Screening of Positive Clones	43
	3.7	Phage-NDV Interactions	43
	3.8	Solid Phage Peptide Synthesis (SPPS)	44
		3.8.1 Esterification of Resin	44
		3.8.2 Peptide Elongation	45
		3.8.3 Cleavage of Peptide from Resin and Deprotection	
		of Side Chain Protecting Group	45
		3.8.4 Purification of Peptide	46
		3.8.4.1 High Performance Liquid Chromatography	16
		(HPLC)	46
	2.0	3.8.4.2 Mass Spectrometry (MS)	47
	3.9	Conformational Studies of Peptides	47
		3.9.1 Peptide Purity Determination	47
		3.9.2 Circular Dichroism Spectroscopy	48
		3.9.3 NMR spectroscopy	48
		3.9.4 Computational Methods	49
4.	RESU	LTS	52
	4.1	Site-Directed Mutagenesis	52
	4.2	Phage-NDV binding study	56
	4.3	Solid-Phase Peptide Synthesis	57
	4.4	CD studies	64
	4.5	NMR studies	66
5.	DISCU	JSSION	78
6.	CONC	CLUSION	91
REFE	RENCE	ES	94
APPE	NDICE	S	103
		IX A: Standard solution and buffers, liquid and media	103
APPENDIX B: Random coil ¹ H chemical shift for the 20 common			
		amino acid residues	104
			•
BIOD	ATA O	F THE AUTHOR	105

LIST OF TABLES

Table		Page
1	Oligonucleotides used to generate phage mutants	42
2	NMR chemical shift data, temperature dependence of amide proton chemical shift, and coupling constants for cyclic-CTLTTKLYC peptide in 100% DMSO at 298 K	67
3	Backbone dihedral angles (in degrees) for the NOE restrained MD simulated structures of cyclic pertide CTLTTKLYC	74

LIST OF FIGURES

Figure		Page	
1	(a) NDV genome organization(b) Schematic representation of the virion structure of NDV	7 7	
2	A schematic diagram of HN protein	9	
3	A schematic diagram of F protein	10	
4	The solid phase peptide synthesis (SPPS) principles	16	
5	Circular dichroism spectra of poly-L-lysine	28	
6	Polypeptide segment	33	
7	The nucleotides sequence of peptide that displayed on pIII proteins of original phage, TL (a) and mutated phages (b-j)	52	
8	Binding capability of phage to NDV strain AF2240	56	
9	HPLC chromatogram of crude peptide determined at $\lambda_{215 \text{ nm}}$	58	
10	HPLC chromatogram of the purified peptide background determined at $\lambda_{215\text{nm}}$	59	
11	HPLC chromatogram of the purified peptide determined at $\lambda_{215 \text{ nm}}$	60	
12	HPLC chromatogram of the purified peptide background determined at $\lambda_{280\text{nm}}$	61	
13	HPLC chromatogram of the purified peptide determined at $\lambda_{280\text{nm}}$	62	
14	Full MS chromatogram of purified peptide analysed by using ESI-MS	63	
15	CD spectra of the peptides in far UV region	65	
16	Fingerprint region of the TOCSY spectrum of cyclic peptide in 100% DMSO at 298K	68	

17	Fingerprint region of the COSY spectrum of cyclic peptide in 100% DMSO at 298K	69
18	Fingerprint region of the NOESY spectrum of cyclic peptide in 100% DMSO at 298K	70
19	Amide region of the NOESY spectrum of cyclic peptide in 100% DMSO at 298K	71
20	The $C^{\alpha}H$ chemical shift deviations from the random coil values for the cyclic peptide in 100% DMSO at 298 K	72
21	Fingerprint region of the TOCSY spectrum of linear peptide in 100% DMSO at 298K	74
22	Fingerprint region of the COSY spectrum of linear peptide in 100% DMSO at 298K	75
23	Fingerprint region of the NOESY spectrum of linear peptide in 100% DMSO at 298K	75
24	Amide region of the NOESY spectrum of linear peptide in 100% DMSO at 298K	76
25	Proposed model for the cyclic peptide CTLTTKLYC	77

LIST OF ABBREVATIONS

 α alpha

A adenine/ alanine

Å Ångstrom unit (10⁻⁸ cm)

ABTS $[C_{18}H_{18}N_4O_6S_4(NH_2)_2]-2',2'-Azinobis (3-$

ethylbenzothiazoline-6-sulforic acid) diammonium

Amp ampicillin

ATP adenosine triphosphate

β beta

BOC tert-butyloxycarbonyl

bp base pair

C cytosine/ cystein

°C degrees centigrade

CD circular dichroism

Clt 2-chlorotrityl

CLTR 2-chlorotrityl resin

COSY 2D correlated spectroscopy

C-terminus carboxy terminus

Cvff consistent valence force field

 δ delta

DCM dichloromethane

DIPEA N,N-diisopropylethylamine

DMF N,N-dimethylformamide

DMSO dimethyl sulfoxide

DNA deoxy-ribonucleic acid

DNase deoxyribonuclease

dNTP deoxynucleoside triphosphate

DQF double quantum filter

DTT 1, 4-dithiothreitol

ε epsilon

EDT 1,2-ethanedithiol

EDTA ethylenediaminetetraacetic acid

ELISA enzyme-linked immunosorbent assay

ESI electrospray ionization

F fusion protein

Fmoc 9-fluorenylmethyloxy carbonyl

g gram

h hour

HA haemagglutination activity

HBTU N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-

ylmethylene]-N-methylmethanaminium

HCl hidrochloride acid

HN haemagglutinin-neuraminidase protein

HOBt 1-hydroxybenzotriazole

HPLC high performance liquid chromatography

HR heptad repeat

Hz Hertz

IPTG isopropyl-β-D-thiogalactopyranoside

K Kelvin/ lysine

kb kilobase

kcal kilacalories

KCl potassium chloride

kDa kilodalton

K_d^{rel} relative dissociation constant

 λ lambda

L large protein/ leucine

l litre

LB Luria Bertani

Ltd. limited

μg microgram

μl microlitre

μM micromolar

M molar/ Matrix protein

MD molecular dynamic

mg milligram

min minute

ml millilitre

mM millimolar

mRNA messenger RNA

MS mass spectrometry

ms millisecond

Mtt 4-methyltrityl

NDV Newcastle disease virus

ng nanogram

nm nanometre

NMR nuclear magnetic resonance

NOE nuclear overhauser enhancement

NOESY 2D nuclear overhauser spectroscopy

NP nucleocapsid protein

nt nucleotide

N-terminus amino terminus

OD optical density

P phosphoprotein

PAGE polyacrylamide gel electrophoresis

PBS phosphate-buffered saline

PEG polyethylene glycol

pH Puissance hydrogene

ps picosecond

RNA ribonucleic acid

PNK polynucleotide kinase

RMSD root mean square distance

rNTP ribonucleoside triphosphate

ROESY rotating frame overhauser enhancement speactroscopy

r distance

rpm revolutions per minute

s second

SDS sodium dodecyl sulphate

SPPS solid-phase peptide synthesis

ssDNA single-stranded DNA

T thymine/ threonine

TBS tris-buffered saline

tBu tert-butyl

TFA trifluoroacetic acid

TFE trifluoroethanol

TIS triisopropylsilane

TMS tetramethyl silane

TOESY total correlation spectroscopy

Trt trityl

U unit

UV ultraviolet

vol volume

v/v volume/volume

w/v weight/volume

X-gal 5-bromo-4-chloro-3-indolyl-b-D-galactoside

Y tyrosine

YT yeast-tryptone

CHAPTER 1

INTRODUCTION

Random peptide library displayed on the pIII protein of bacteriophage M13 has been utilized extensively to select peptide ligands that bind to target molecules such as cell receptors, enzymes, and viral surface proteins. Nucleotide sequences encoding these peptides were cloned into the gIII gene of the phage, which is then translated and displayed on the pIII protein as a fusion molecule. Ramanujam et al. (2002) employed a disulfide-constrained phage display library to select ligands that interact with Newcastle disease virus (NDV) that had been immobilized on microtitre plate wells. After three rounds of affinity selection, peptides with the sequence CTLTTKLYC and other related sequences were obtained.

Synthetic peptides with the sequence TLTTKLY, either in linear or cyclic forms, were shown to inhibit the propagation of NDV in embryonated chicken eggs (Ramanujam et al., 2002). This inhibition could be due to the ability of the peptide to bind tightly to the surface proteins of the virus which then interferes with the fusion activity between NDV and the host cell. The binding site of the peptides on the viral surface proteins, however, remained unknown. The two surface proteins on the virus, the haemagglutinin-neuraminidase (HN) and fusion (F) proteins have been known to be involved in attachment and entry into the host cell. They are, however, rather difficult to be isolated while retaining their structural integrity. Several reviews have shown that the co-expression of these homologous proteins is crucial for the

infection activity making the determination of the peptide-NDV binding site very difficult (Stone-Hulslander and Morrison, 1997; McGinnes *et al.*, 2002).

The relative dissociation constants (K_d^{rel}) of the phage-NDV have been determined by using an equilibrium-binding assay in solution (Ramanujam *et al.*, 2002; 2004). The phage displayed two widely different binding affinities towards NDV with the first binding affinity almost 1000-fold higher than the second one. It was suggested that the system has two or more classes of binding sites with different affinities. The first K_d^{rel} value has been shown to be able to differentiate the pathotypes of NDV into two groups (Ramanujam *et al.*, 2004): one of the groups consists of lentogenic and mesogenic strains whilst velogenic strains form the other group. This finding is particularly important because there are no detection tools capable of differentiating between the mesogenic and velogenic strains (Li *et al.*, 2002).

The functional activity of any protein is always associated with its structure, which in turn is influenced by its sequence. Proteins with different structures and sequences account for the diverse functions. Not all amino acid residues in a protein are involved in functional activities. Some amino acid residues are the key residues or regions whereas the others serve as a 'holder'. Nevertheless, these 'holder' amino acids may play an important role in ensuring proper folding of the protein. In order to determine which of the amino acids in the above novel peptide are the key residues involved in the peptide-virus interaction, a detailed analysis on each of the amino acid residues in the sequence CTLTTKLYC by mutagenesis should be performed. In addition, information on the tertiary structure(s) of this peptide would be useful in developing a model for synthesizing a secondary drug as in peptidomimetics.

The main objective of this study was to determine the three-dimensional structure(s) of the inhibitory peptide, CTLTTKLYC, and the key residue(s) in the phage-NDV interactions. In order to achieve these objectives, the study has been divided into three major sections:

1. Phage-NDV binding study:

The amino acid residues in peptide CTLTTKLYC displayed on the pIII protein of the M13 phage were substituted by site-directed mutagenesis and used in phage-NDV binding study to determine the key residues involved in the interaction.

2. Fmoc-solid phase peptide synthesis:

The CTLTTKLYC peptide was synthesized by using the Fmoc-solid phase peptide synthesis and purified by using RP-HPLC to obtain sufficient peptide powder for structural analysis.

3. Conformational study of the peptide:

The two- and three-dimensional structures of the peptide were studied with circular dichroism (CD) and nuclear magnetic resonance (NMR), and the structures of the peptide were modelled using molecular modelling software.

The conformation study of the peptides will provide information on the functional activities of the peptide, in particular the two $K_d^{\ rel}$ values.

