EVALUATION OF NATURAL IMMUNOSTIMULANTS FOR GROWTH PROMOTION AND PROTECTION AGAINST Aeromonas hydrophila IN JUVENILE RED HYBRID TILAPIA (Oreochromis sp.)

NUR HIDAYAHANUM HAMID

FPV 2014 22
EVALUATION OF NATURAL IMMUNOSTIMULANTS FOR GROWTH
PROMOTION AND PROTECTION AGAINST Aeromonas hydrophila
IN JUVENILE RED HYBRID TILAPIA (Oreochromis sp.)

By

NUR HIDAYAHANUM HAMID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Partial Requirements for the Degree of Master of Science

May 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

With appreciation and respect, this thesis is dedicated to:

My beloved parent, brothers and sisters.
EVALUATION OF NATURAL IMMUNOSTIMULANTS FOR GROWTH
PROMOTION AND PROTECTION AGAINST *Aeromonas hydrophila*
IN JUVENILE RED HYBRID TILAPIA (*Oreochromis* sp.)

By

NUR HIDAYAHANUM HAMID

May 2014

Aeromonas hydrophila is widely known as one of the common bacteria species in freshwater habitats and occasionally been recognized as a fish pathogen. In Malaysia, the use of immunostimulants especially in aquaculture industry has not been studied widely due to the lack of promotion and education especially to fish farmers. Hence, this study was conducted to identify *A. hydrophila* from disease freshwater fish. The bacteria were also used to perform antimicrobial sensitivity tests. Two types of immunostimulants (Lipopolysaccharide and β-glucan) were used to evaluate the changes in the haematology, non-specific immune response, disease resistance and growth performance of juvenile Red hybrid tilapia (*Oreochromis* sp.).

In the present study, the isolates of *A. hydrophila* were subjected for Gram’s staining and the identity of the isolates were confirmed by using API 20E® kit in combination with oxidase and catalase tests. The isolates were also inoculates on horse blood and Rimler-Shotts agar. Antimicrobial sensitivity test was also done by using Kirby-Bauer method. Then, pathogenicity of *A. hydrophila* was expressed as median lethal dose (LD$_{50}$) and moribund fish were proceed to histopathological examination. After that, the efficacy of lipopolysaccharide (LPS) and β-glucan was studied in juvenile Red hybrid tilapia (*Oreochromis* sp.) against *A. hydrophila*. The fish were divided into seven different groups of test including control which consisting of 15 fish per group. Each group had two replicates. Different concentration of LPS and β-glucan were used for intraperitoneal injection (i.p.), long-term bath exposure and oral feeding, they were 50 μg/fish, 50 μg/L and 25 mg/kg, respectively. For intraperitoneal injection and long-term bath exposures, LPS and β-glucan were administered to the test fish on day 1, 7 and 14. While for oral feeding, the test fish were fed with commercial pellet added with LPS and β-glucan daily until day 40. On day 7, blood samples were collected from each group to examine the haematological parameters of the test fish. Control and test fish were challenged with LD$_{50}$ concentration of *A. hydrophila* by i.p. on day 16 (i.p injection and bath exposures) and on day 41 (oral). Mortality rate and RPS (Relative Percentage Survival) were
then calculated. Daily mortality was recorded for a week. From the study, 11 isolates of bacteria were successfully identified by using morphological, biochemical (conventional and commercial kit) and physiological tests. The bacteria isolates were characterized as Gram-negative, motile, catalase positive, oxidase positive, possessed straight rod cell; approximately up to 3 µm in length which appeared in singles and pairs. The isolates showed β-haemolysis on horse blood agar and were able to grow on selective agar (Rimler-Shott agar). All bacteria isolates were found to be sensitive towards streptomycin, kanamycin, chloramphenicol and gentamicin but showed resistant to amoxicillin. In a pathogenicity test run by intraperitoneal injection, the infection caused marked clinical sign of abnormalities such as exophthalmia, lethargy, enlargement of kidney, spleen and liver. Histopathological examinations showed marked congestion and haemorrhages in the spleen, liver and kidney tissues. The median lethal dose (LD_{50}) at 96 hours of the isolate for juvenile Red hybrid tilapia (*Oreochromis* sp.) was 6.3 x 10^6 cfu/ml. Administration of LPS and β-glucan by intraperitoneal injection, long-term bath exposure and oral feeding significantly enhanced the RPS. The survivability was higher in fish treated with both compounds, which was significantly high (more than 50%) when compared to control group (less than 50%). The results indicated that oral feeding had the highest survival among the treatment groups followed by i.p injection and bath due to the long duration of feeding exposure. In haematological assay, there were no significant difference between control and treated groups. However, the fish administered with LPS and β-glucan showed significant increased in total leucocytes count (P < 0.05) and also significantly (P < 0.05) improve the growth performance of tested fish compared with the control group. In histopathological examinations, different types of MMC (melano-macrophage centre) were observed in spleen tissues of control and treated groups. The present study revealed that the presence of numerous hemosiderin granules (brownish yellow) was higher in the spleen of control group compared to treated groups. The MMC in the treated group was more enriched in melanin pigment which is dark pigment-containing cells (macrophage). The findings in this study indicates that *A. hydrophila* infection has become an important health issue in tilapia farms. This study also demonstrates that LPS and β-glucan administration through injection, long-term bath exposures and oral feeding effectively stimulates the non-specific cellular as well as growth performances and offers protection against *A. hydrophila* infection in juvenile Red hybrid tilapia (*Oreochromis* sp.). Data from biochemical tests, haematological and histological studies provide valuable and previously unknown information associates with *A. hydrophila* in cultured juvenile Red hybrid tilapia (*Oreochromis* sp.). In addition, this study also reveals that LPS and β-glucan could be used as an alternative for prophylaxis against *A. hydrophila* infection and the important of long term exposure of immunostimulants to obtain maximum protection against bacterial infection.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENILAIAN KE ATAS IMMUNOSTIMULASI SEMULAJADI DALAM MENGGALAKKAN TUMBESARAN DAN PERLINDUNGAN MENENTANG \textit{Aeromonas hydrophila} PADA REGA IKAN TILAPIA MERAH HIBRID (\textit{Oreochromis} sp.)

Oleh

NUR HIDAYAHANUM HAMID

Mei 2014

Pengerusi : Prof. Madya Hassan Hj. Mohd Daud, PhD

Fakulti : Perubatan Veterinar

\textit{Aeromonas hydrophila} terkenal dengan meluas sebagai spesies bakteria yang biasa dalam habitat air tawar dan kadangkala dikenali sebagai patogen ikan. Di Malaysia, penggunaan immunostimulasi terutamanya dalam industry akuakultur kurang dikaji kerana kurangnya promosi dan pengetahuan terutamanya para penternak ikan. Oleh itu, kajian ini dilakukan untuk mengenalpasti \textit{A. hydrophila} daripada ikan air tawar yang dijangkiti penyakit. Bakteria tersebut juga digunakan untuk ujian sensititivity antimikrobial. Dua jenis immunostimulasi (Lipopolisakarida dan \(\beta\)-glukan) digunakan untuk menilai keberkesanan bagi memeriksa perubahan dalam hematologi, sel tak-spesifik, daya rintang penyakit dan penilaian tumbesaran rega ikan tilapia merah hibrid (\textit{Oreochromis} sp.). Dalam kajian ini, isolate \textit{A. hydrophila} melalui perwarnaan Gram, Identiti isolate \textit{A. hydrophila} dipastikan dengan API 20E® dengan kombinasi ujian oksidasi dan katalase. Kemudian bacteria tersebut diinokulasi atas agar darah kuda dan agar Rimler-Shotts. Ujian sensitiviti antimikrobial dijalankan menggunakan kaedah Kirby-Bauer. Selepas itu, kepatogenan \textit{A. hydrophila} diungkap sebagai median dosis maut (LD\textsubscript{50}) dan ikan nazak diteruskan dengan ujian histopatologi. Daripada kajian ini, keberkesanan LPS dan \(\beta\)-glukan turut dikaji pada rega tilapia merah hibrid (\textit{Oreochromis} sp.) menentang patogen bakteria, \textit{A. hydrophila}. Sekumpulan ikan dibahagi kepada tujuh kumpulan yang berbeza berbeza termasuk kawalan dimana setiap kumpulan mengandungi 15 ekor ikan. Setiap kumpulan memiliki dua replika. Kepekat LPS dan \(\beta\)-glukan yang berbeza digunakan untuk suntikan (i.p.), mandian dalam jangka masa panjang dan pemakanan secara oral iaitu 50 \(\mu\)g/ikan, 50\(\mu\)g/L dan 25 mg/kg, setiap satu. Untuk suntikan (i.p.) dan mandian, LPS dan \(\beta\)-glukan diberi pada hari pertama, ke-tujuh dan ke-empat belas. Sementara, kumpulan ikan yang diberi makanan secara oral diberi makan pellet komersial yang ditambah LPS atau \(\beta\)-glukan setiap hari sehingga 40 hari. Pada hari ke-tujuh, sampel darah ikan diambil daripada setiap kumpulan untuk ujian hematologi dan imunologi. Ikan kawalan dan kajian dijangkitkan dengan \textit{A. hydrophila} berkepekatan LD\textsubscript{50} pada hari ke-16 (suntikan intraperitoneal dan
ACKNOWLEDGEMENTS

In the Name of Allah, I wish to express my most sincere and deepest gratitude to my supervisor, Associate Professor Dr. Hassan Hj. Mohd Daud for his continuous supervision, constant support, very useful advices and comments throughout the course of this study. I also wish to extend my sincere appreciation to my supervisory committee members Professor Dr. Noordin Mohamed Mustapha and Professor Dr. Mohamed Ali Rajion for their support, advices and guidance.

I am also indebted to my best friend, Ruhil Hayati Hamdan who’s always there for me through my toughest times by telling me I will succeed. Of course, not to forget, my gratitude towards the members of Aquatic Animal Health Unit, Department of Veterinary Clinical Studies and Faculty of Veterinary Medicine for their guidance, assistance, encouragement and friendship during this time.

Finally, I would like to express my deepest thanks and appreciation to my dearest family for their constant encouragement, moral support as well as supporting me financially during my study.
I certify that a Thesis Examination Committee has met on 22 May 2014 to conduct the final examination of Nur Hidayahanum bt Hamid on her thesis entitled "Evaluation of Natural Immunostimulants for Growth Promotion and Protection Against Aeromonas hydrophila in Juvenile Red Hybrid Tilapia (Oreochromis sp.)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohamed Ariff bin Omar, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Siti Khairani binti Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Md Sabri bin Mohd Yusoff, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Najiah Musa, PhD
Associate Professor
Universiti Malaysia Terengganu
Malaysia
(External Examiner)

[Signature]

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 July 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia as fulfillment of the requirements for the degree of Master of Science. The members of the supervisory committee were as follows:

Hassan Hj. MohdDaud, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noordin Mohamed Mustapha, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohamed Ali Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia.

Date:
DECLARATION

Declaration by Graduate Student

I Hereby Confirm That:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other degree at any other institutions;

intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: _______________________

Name and Matric No.: ________________________________
Declaration by Members of Supervisory committee

This is to confirm that:
1. the research conducted and the writing of this thesis was under our supervision;
2. supervision responsibilities as slated in Rule 41 in Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ________________________ Signature: ________________________
Name of Chairman of
Supervisory Committee:________________________
Member of Supervisory
Committee: ________________________

Signature: ________________________
Name of Member of
Supervisory
Committee: ________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Fish Diseases and Health Management in Malaysia</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Aeromontasis Study in Malaysia</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Current Study on Fish Health Management</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Statement of Problem and Significance of Study</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Hypothesis of the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Objectives of the Study</td>
<td>3</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Importance of Red Hybrid Tilapia, Oreochromis sp. In Aquaculture Industry in Malaysia</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Common Diseases of Oreochromis sp.</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Introduction on Aeromonas hydrophila</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Disease and symptoms caused by Aeromonas hydrophila</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Antibiotic Sensitivity</td>
<td>7</td>
</tr>
<tr>
<td>2.6 Fish Immune System</td>
<td>9</td>
</tr>
<tr>
<td>2.7 Prophylaxis and Therapy</td>
<td>10</td>
</tr>
<tr>
<td>2.8 Lipopolysaccharide, LPS</td>
<td>11</td>
</tr>
<tr>
<td>2.9 β-glucan</td>
<td>12</td>
</tr>
<tr>
<td>2.10 Delivery Methods of Immunostimulants</td>
<td>13</td>
</tr>
<tr>
<td>2.10.1 Injection</td>
<td>13</td>
</tr>
<tr>
<td>2.10.2 Bath</td>
<td>13</td>
</tr>
<tr>
<td>2.10.3 Oral</td>
<td>14</td>
</tr>
<tr>
<td>2.11 Haematology</td>
<td>14</td>
</tr>
<tr>
<td>2.12 Histology</td>
<td>15</td>
</tr>
<tr>
<td>3 ISOLATION, CHARACTERIZATION AND ANTIBIOTIC SENSITIVITY ASSAY OF Aeromonas hydrophila FROM DISEASED FRESHWATER FISH</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Materials and Methods</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 Fish Samples</td>
<td>17</td>
</tr>
<tr>
<td>3.2.2 Morphological Tests</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1.1 Gram staining</td>
<td>17</td>
</tr>
</tbody>
</table>
3.2.2.2 Blood Hemolysis and Rimler-Shotts agar

3.2.3 Biochemical Tests
 3.2.2.1 Identification Kit (API 20E®)
 3.2.4 Antibiotics Sensitivity Test

3.2.5 Storage

3.3 Results
 3.3.1 Isolation and Identification of Aeromonas hydrophila
 3.3.2 Determination of antibiotic sensitivity

3.4 Discussion

3.5 Conclusion

4 DETERMINATION OF MEDIAN LETHAL DOSE, \(LD_{50}\) OF Aeromonas hydrophila

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Experimental fish
 4.2.2 Bacterial Preparation
 4.2.3 \(LD_{50}\) challenge and sampling
 4.2.4 Histology
 4.2.5 Statistical analysis

4.3 Results
 4.3.1 Clinical Signs
 4.3.2 Histopathology
 4.3.3 Pathogenicity

4.4 Discussion

4.5 Conclusion

5 APPLICATION OF BACTERIAL LIPOPOLYSACCHARIDE, LPS (Escherichia coli) USING THREE DIFFERENT ROUTES OF ADMINISTRATION (INTRAPERITONEAL INJECTION, BATH, AND ORAL) IN Oreochromis sp.

5.1 Introduction

5.2 Materials and Methods
 5.2.1 Experimental fish
 5.2.2 Bacterial Preparation
 5.2.3 Immunostimulant Preparations
 5.2.4 Experimental Design
 5.2.4.1 Intraperitoneal injection route
 5.2.4.2 Bath route
 5.2.4.3 Oral feeding
 5.2.5 Assessment of Growth Performance for Oral Immunization

5.2.6 Challenge Test
 5.2.7 Sample of Blood Collection and Analysis
 5.2.8 Histological studies
 5.2.9 Statistical Analysis

5.3 Results
5.3.1 RPS of *Oreochromis* sp. challenged with *Aeromonas hydrophila*
5.3.2 Haematology and Total Leucocytes count (TLC)
5.3.3 Growth Performance in Oral Feeding
5.3.4 Histopathology
5.4 Discussion
5.5 Conclusion

6 ADMINISTRATION OF β-GLUCAN (*Saccharomyces cerevisiae*) USING THREE DIFFERENT ROUTES OF ADMINISTRATION (INTRAPERITONEAL INJECTION, BATH, AND ORAL) IN *Oreochromis* sp.

6.1 Introduction
6.2 Materials and Methods
6.2.1 Experimental fish
6.2.2 Bacterial Preparation
6.2.3 Immunostimulant Preparations
6.2.4 Experimental Design
6.2.4.1 Intraperitoneal injection route
6.2.4.2 Bath route
6.2.4.3 Oral feeding
6.2.5 Assessment of Growth Performance for Oral immunization
6.2.6 Challenge Test
6.2.7 Sample of Blood Collection and Analysis
6.2.8 Histological studies
6.2.9 Statistical Analysis
6.3 Results
6.3.1 RPS of *Oreochromis* sp. challenged with *Aeromonas hydrophila*
6.3.2 Hematology and Total Leucocytes count (TLC)

7 GENERAL DISCUSSION AND CONCLUSION
7.1 General Conclusion
7.2 Recommendation

REFERENCES
APPENDICES A
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Break-points for 6 antibiotics according to the National Committee for Clinical Laboratory Standards (CLSI 2006) with Escherichia coli ATCC 25922 as quality control.</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Morphological, biochemical and physiological characteristics of Aeromonas hydrophila isolates from private fish farms at Selangor state, Malaysia.</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Antimicrobial sensitivity of the eleven Aeromonas hydrophila isolates to various type of antibiotics.</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Total cumulative mortality recorded for juvenile Red hybrid tilapia.</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Results are shown for functional assay as mean ± SD, n=5. *Statistically significant difference (P < 0.05) using One Way Anova to compare control and treated groups. For RPS n=20 without statistical analysis.</td>
<td>40</td>
</tr>
<tr>
<td>5.2</td>
<td>Growth performance by the end of experiment of Oreochromis sp.fed on LPS for 40 days as mean ± SD, n=5. *Statistically significant difference (P < 0.05) using One Way Anova to compare control and treated groups.</td>
<td>42</td>
</tr>
<tr>
<td>6.1</td>
<td>Results are shown for functional assay as mean ± SD, n=5. *Statistically significant difference (P < 0.05) using One Way Anova to compare control groups and treated group. For RPS n=20 without statistical analysis.</td>
<td>51</td>
</tr>
<tr>
<td>6.2</td>
<td>Growth performance by the end of experiment of Oreochromis sp.fed on glucan for 40 days as mean ± SD, n=5. *Statistically significant difference (P < 0.05) using One Way Anova to compare control and treated groups.</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Pure Aeromonas hydrophila isolates on TSA agar incubated 35 °C at 24 hour.</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Morphological characteristic; Aeromonas hydrophila with Gram staining showing Gram-negative bacteria with short rod, appearing in singles and pairs, 100 µm.</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Aeromonas hydrophila showed β-hemolytic activity on horse blood agar.</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>Aeromonas hydrophila colonies grown in a Rimler-Shott (RS) agar showed black centered colonies.</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Juvenile Red hybrid tilapia infected with Aeromonas hydrophila at 1 dpi showing marked clinical signs such as ulcers (black arrow), haemorrhages (white arrow) and fins erosion (arrow head).</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>Injected fish at 2 dpi showed clinical sign of bilateral exophthalmia (black arrow).</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>Internal organ of juvenile Red hybrid tilapia at 1 dpi showed petechiation of liver (head arrow), enlargement of spleen (white arrow) and kidney (black arrow).</td>
<td>28</td>
</tr>
<tr>
<td>4.4</td>
<td>Kidney of infected fish at 1 dpi showed degeneration of excretory tubules and glomeruli (black arrow) and severe haemorrhages (white arrow) (H&E staining, 50µm).</td>
<td>29</td>
</tr>
<tr>
<td>4.5</td>
<td>Liver of infected fish at 1 dpi showing severe congestion of hepatic veins (black arrow) (H&E staining, 50 µm).</td>
<td>29</td>
</tr>
<tr>
<td>4.6</td>
<td>Liver of infected fish at 1 dpi showing severe vacuolation (black arrow) (H&E staining, 100 µm).</td>
<td>30</td>
</tr>
<tr>
<td>4.7</td>
<td>Spleen from infected fish at 1 dpi showing tissue degeneration (black arrow) and presence of hemosiderin (arrow head) (H&E, 50 µm).</td>
<td>30</td>
</tr>
<tr>
<td>4.8</td>
<td>Total mortality of Red hybrid tilapia challenged with different doses of Aeromonas hydrophila versus hours of experiment (dpi).</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage of survival versus route of treatments.</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>Light micrographs of spleen of juvenile Red hybrid tilapia (Oreochromis sp.). A, Control; B, i.p injection; C, bath; and D, oral feeding. Spleen of fish challenged with Aeromonas</td>
<td>42</td>
</tr>
</tbody>
</table>
hydrophila shows loosely packed red and white pulp, and presence of numerous hemosiderin granules (brownish yellow), which shows heavy infection in control group (A). The dark staining (black arrow in B, C and D) is characteristic for the melanin-containing macrophage in the MMC of fish treated with LPS (H&E staining, 50 µm).

6.1 Percentage of survival versus route of treatment.

6.2 Light micrographs of spleen of juvenile Red hybrid tilapia (Oreochromis sp.). A, Control; B, i.p injection; C, bath; and D, oral feeding. Spleen of fish challenged with Aeromonas hydrophila shows loosely packed red and white pulp and presence of numerous hemosiderin granules (brownish yellow), which shows heavy infection in control group (A). The dark staining (black arrow) is characteristic for the melanin-containing macrophage in the MMC of fish treated with glucan (H&E staining, 50 µm).
LIST OF ABBREVIATIONS

cfu Colony-forming unit
DO Dissolved oxygen
dpi Days post inoculation
FAO Food and Agriculture Organization of the United Nations
H&E Hematoxylin and eosin
i.p Intraperitoneal
LD_{50} Median lethal dose
MMC Melano-macrophage centres
Ppt Parts per thousand
SCP single cell proteins
TSA Trypticase soy agar
TSB Trypticase soy broth
w/v Weight per volume
w/w Weight per Weight
CHAPTER 1

INTRODUCTION

1.1 Fish Diseases and Health Management in Malaysia
Aquaculture is one of important industries all over the world. From its beginning in the 1920s, aquaculture in Malaysia has developed quickly and become an important activity nowadays (FAO, 2011). Various kinds of marine and freshwater fish have been cultured and the production of cultured fish increases every year. In Malaysia, fishes are usually cultured in enclosed system such as ponds, net cages and the latest one is in recirculating aquaculture system (RAS). Nowadays, the main aim of commercial aquaculture is to increase production by intensification; which are by increasing stocking density, increased seed production, and feeding with good quality of feed. However, disease in intensive aquaculture is said to be the great importance in Malaysia due to economic loss observed in recent years. Consequently, the use of chemicals and antibiotics had become common practices in fish farm.

Due to the intensive aquaculture practices, fish in cultured systems are susceptible to numerous types of bacterial, viral and parasitic diseases. The presence and development of fish disease is the result of the interaction between pathogen, host and environment. In the cultured system, poor handling and overcrowding always tend to give unfavourably affect to the fish health. These conditions may lead to the production of poor physiological environment and increase susceptibility of the cultured fish to infection disease (Sakai, 1998). Among the three major causes of disease, most frequent related to freshwater fish is bacterial infections. Hasty and uncontrolled growth of pathogens and indiscriminate use of antibiotics to prevent the emerging of pathogen have resulted in the emergence of several resistant pathogens in aquaculture. Currently, these two factors are the most fundamental concerns for both public health workers and farmers.

Even though the infectious diseases which caused by pathogenic species of bacteria in freshwater fish have been described in the majority of the existing taxonomic groups, however only a relatively small number are responsible of important economic losses in cultured fish worldwide. *Aeromonas* spp., *Pseudomonas* spp., *Streptococcus* spp. and *Flexibacter columnari* are some of the regularly bacteria isolated from fish and become primary pathogenic agents which frequently reducing the production of cultured freshwater fish. Among this pathogen of bacterial origin, motile aeromonads play an important role in freshwater systems.

1.2 Aeromoniasis Study in Malaysia
Aeromonas hydrophila and other motile aeromonads are among the most common bacteria in freshwater habitats throughout the world. These bacteria frequently cause diseases among cultured and wild fishes. Because of this, the bacteria species is said to be commonly isolated from diseased fish. *Aeromonas hydrophila* is a primary
(Esteve et al., 1993), secondary (Joice et al., 2002) and opportunistic pathogen (Dooley and Trust, 1988) of a wide variety of aquatic and domestic animals, including humans.

In Malaysia, only few report of disease outbreaks that was caused by *Aeromonas hydrophila* in aquaculture system especially in food fish have been documented. Infections due to *Aeromonas hydrophila* are common and pose a threat especially to the development of the aquaculture sector. Taufik and Wong (1990) showed that *Aeromonas hydrophila* was the major pathogenic bacterium in catfishes from paddy field Kedah and Perak, West Malaysia. In addition, Najiah et al. (2008) reported the presence of *Aeromonas hydrophila* not only in the food fish but also in freshwater imported ornamental fish (*Xiphophorus maculates, Barbus pentazona hexazona, Symphysodon spp., Colisa lalia, Gymnocorymbus ternetzi, Poecilia reticulate, Pangasius sutchi, and Osphronemus goramy*) in retail pet shop in Kuala Terengganu.

1.3 Current Study on Fish Health Management

Various chemicals and antibiotics have been used to treat bacterial infections in cultured fish. It provides a useful means of control to the infections. However, there are many problems associated with the development of drug-resistant bacteria and the high cost of treatment. At present, preventive and management measures are fundamental concern to overcome such outbreak of diseases. Immunostimulants are considered as a helpful and effective means for enhancing immune status of cultured fish. There are several approaches to disease prevention that previously have been successfully used in other animal industries such as vaccines and immunostimulants. Both approaches also have been effectively used in some aquaculture industries and should be considered as a part of fish health management options.

Vaccination is a useful prophylaxis for infectious diseases and it is already commercially available for bacterial infections such as vibriosis, redmouth disease and furunculosis and also for viral infection such as IPN (Sakai, 1998). In the salmon industry, it has been used for about 30 years and known to be one of the major reasons that salmon production has been successful. The used of vaccine also dramatically decreased the use of antibiotics (Sommerset et al., 2005). For example, in Norway (1987), before the extensive used of vaccines, almost 50,000 kg of antibiotics were used. In 1997, when vaccines had become more routine practices, antibiotic usage had decreased to less than 1000-2000 kg (Sommerset et al., 2005). For the time being, even though vaccination may be the most effective method of controlling fish diseases but not all diseases can be treated with vaccine. According to Sakai (1998), the vaccine development for *Renibacterium salmoninarum*, is still not far been successful. Therefore, it is impossible for us to rely only on vaccination in order to control the fish diseases.

Nowadays the main problem in the fish rearing during larval and on-growing stages is microbial pathogens. Therefore, it is important for us to develop methods for establishing microbial control at all stages of the cultivation progress. One
possibility is immunostimulation, which includes methods of enhancing the capacities of the specific and non-specific immune systems. It is valuable for the control of fish diseases and may also be useful in fish culture. Immunostimulants increase resistance to infectious disease, not only by enhancing specific immune response but also by enhancing non-specific defense mechanisms (Sakai, 1998). There are many experiments on non-specific immunostimulation of fish that suggest the method has considerable potential for reducing losses in aquaculture, both during larval and on-growing stages.

1.4 Statement of Problem and Significance of Study
Vaccination using immunostimulant is very effective and acts as a potential approach in order to increase the immunocompetency and disease resistance of fish. Immunostimulants said to be safer than antibiotic and chemotherapeutic as their range of efficacy are wider and broad compared to common vaccine (Sakai, 1998). However, in Malaysia, the use of immunostimulant especially in aquaculture industry has not been study widely due to the lack of promotion and education especially to fish farmers. Moreover, there is a relatively few of the end product that show guarantee in a research context become available for use by the fish farmer. For aquaculture industry in Malaysia, it will lead to high return and income since this industry is expanding throughout the region. Therefore, the aim of this study is to evaluate the status and potential of immunostimulation as an element in the strategy for solving microbial problems in promoting fish health against pathogen. The immunostimulants that were used in this study were lipopolysaccharide (LPS) and β-glucan. The assay will be done on juvenile Red hybrid tilapia (Oreochromis sp.), but the results are also applicable to other species of fish and organisms relevant to aquaculture.

1.5 Hypothesis of Study
Natural immunostimulants which are lipopolysaccharide (LPS) and β-glucan might be used to promote health and protection against Aeromonas hydrophila in juvenile Red hybrid tilapia (Oreochromis sp.).

1.6 Objectives of the study
The objectives of this study were:
1. to isolate and identify Aeromonas hydrophila from freshwater fish.
2. to perform antimicrobial sensitivity test on Aeromonas hydrophila isolates.
3. to investigate whether the application of immunostimulants (β-glucan and LPS) can be used to improve fish health, survival against Aeromonas hydrophila infection as well as growth performance.
REFERENCES

and laminaran in mercuric chloride treated Nile tilapia (*Oreochromis niloticus*) and experimentally infected with *Aeromonas hydrophila*. *Fish and Shellfish Immunology*, 28: 802-808.

from cultured fish, Telapia (*Telapia mosambica*). *Letters in Applied Microbiology*, 24: 479-482.

Thampuran, N. and Surendran, P. K. 1995. Incidence of motile aeromonads in marine environment, fishes and processed fishery products (Technological advancements in fisheries). In proceedings of the National Symposium on Technological Advancements in Fisheries and its Impact on Rural Development held at Cochin by School of Industrial Fisheries, Cochin University of Science and Technology during December 5 to 7, pp. 352-358.

Yambot, A.V. and Inglis, V. 1994. Aeromonas hydrophila isolated from Nile tilapia (Oreochromis niloticus) with “eye disease”. In International Symposium on Aquatic Animal Health, University of California, School of Veterinary Medicine, Davis, CA. p. 103.

