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Local white-rot fungi isolated from soil and wood samples were screened for their 

ability to degrade textile azo dyes. Sixty three white-rot fungi cultures isolated from 

various Peninsular Malaysia locations in Selangor, Kelantan, Perak and Terengganu 

were screened for the ability to degrade four textile azo dyes; Ponceau 2R (C.I. 

16450), Orange G (C.I. 16230), Direct Blue 71 (C.I. 34140) and Biebrich Scarlet (C.I. 

26905). Forty isolates gave positive results with varying degrees of degradation. 

Based on these results, an unidentified white-rot fungus (Isolate 5-UPM) isolated 

from Universiti Putra Malaysia (UPM) Selangor campus was selected for further 

studies due to its ability to completely degrade all four azo dyes in the minimum 

amount of time. Nutritional studies on defined solid medium showed that Isolate 5- 

UPM was only able to degrade the four azo dyes under nitrogen-limiting conditions 

and an additional carbon source such as glucose was needed to provide sufficient 
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energy for the degradation to occur. When grown in two-stage liquid cultures, Isolate 

5-UPM was able to degrade 93 to 99 % of 0.2 g/L azo dyes in two to eight days with 

each dye being degraded at different rates. Direct Blue 71 was degraded the fastest 

followed by Orange G, Ponceau 2R and Biebrich Scarlet. Generally, azo dye 

degradation rates were shown to be higher in agitated cultures compared to static 

cultures, with rates almost twice those in static cultures. Isolate 5-UPM degraded the 

four azo dyes optimally when incubated at 35 to 45 "C in static cultures. The initial 

degradation medium (pH 4.5 to 5.9) did not have any significant effects on the 

degradation rates except for Ponceau 2R cultures where the degradation rate was 

highest at pH 4.5. However, the final pH of all cultures dropped to approximately pH 

4.0. Assays for lignin-modifying enzymes (LMEs) involved in azo dye degradation 

showed only the presence of laccase (E.C. 1.10.3.2) while lignin peroxidase (E.C. 

1.1 1.1.14) and manganese peroxidase (E.C. 1.1 1 . l .  13) were not detected. Laccase 

activity profile in static liquid degradation cultures showed correlation to the azo dye 

degradation profile and was highest in cultures incubated at room temperatures except 

for Biebrich Scarlet cultures, which was highest at 30 "C. The initial pH of the 

degradation medium (pH 4.5 to 5.9) did not have any significant effect on laccase 

activity except in Direct Blue 71 culture where it is highest at pH 5.9. Laccase 

produced by Isolate 5-UPM during azo dye degradation was partially purified and 

when 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) was used as the 

substrate, it was shown to have a K,,, value of 0.1 mM, optimum activity at 50 to 70 

"C and pH 3.5 to 4.0 while being most stable at room temperature and pH 6.0 to 7.0. 

Laccase was proven to directly degrade the four azo dyes with the K, values of 1.5 x 

10 '3 mM, 9.8 x 10 4 m ~ ,  1.8 x 10 4 m ~  and 1.8 x 10 4 m ~  for Ponceau 2R, Orange 
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G, Direct Blue 71 and Biebrich Scarlet, respectively although the latter azo dye 

inhibited laccase activity at concentrations higher than 0.8 mg/L. 
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Kulat reput-putih tempatan yang di pencilkan dari sampel tanah dan kayu telah 

disaring untuk keupayaan mengurai pewarna tekstil azo. Enam puluh tiga kultur kulat 

reput-putih telah dipencilkan dari beberapa lokasi di Selangor, Kelantan, Perak dan 

Terengganu dan disaring untuk keupayaan mengurai empat pewarna tekstil azo; 

Ponceau 2R (C.I. 16450), Orange G (C.I. 16230), Direct Blue 71 (C.I. 34140) dan 

Biebrich Scarlet (C.I. 26905). Empat puluh kultur pencilan telah memberikan 

keputusan positif yang berbeza-beza tahap penguraiannya. Berdasarkan keputusan ini, 

satu kultur kulat reput-putih yang tidak dikenalpasti (Isolat 5-UPM) yang telah di 

pencilkan dari sampel di karnpus Universiti Putra Malaysia (UPM) Selangor telah 

dipilih untuk kajian seterusnya kerana keupayaanya mengurai ke empat-empat 

pewama azo yang digunakan dalam masa yang tersingkat. Kajian nutrisi 

menggunakan media kultur pejal terperinci menunjukkan Isolat 5-UPM hanya mampu 

mengurai ke empat-empat pewama azo tersebut ketika berada di dalam keadaan 

kekurangan nitrogen dan sumber karbon tambahan seperti glukosa diperlukan untuk 
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membekalkan tenaga yang cukup bagi proses penguraian untuk berlaku. Apabila 

ditumbuhkan di dalam kultur cecair dua peringkat, IsoIat 5-UPM mampu mengurai 

dari 93 hingga 99 % 0.2 g/L pewarna azo dalam dua hingga lapan hari dengan kadar 

penguraian yang berbeza. Direct Blue 7 1 telah diurai terpantas, diikuti oleh Orange G, 

Ponceau 2R dan Biebrich Scarlet. Secara amnya, kadar penguraian pewarna azo 

adalah lebih tinggi di dalam kultur goncang berbanding di dalam kultur pegun, 

dengan kadarnya hampir dua kali ganda di dalam kultur pegun. Isolat 5-UPM 

mengurai pewama-pewama azo tersebut secara optimum apabila dieramkan pada 

suhu 35 to 45 "C di dalam kultur pegun manakala pH awal media penguraian (pH 4.5 

hingga 5.9) tidak mempunyai kesan yang bermakna ke atas kadar penguraian kecuali 

di dalam kultur Ponceau 2R di mana kadar penguraian yang tertinggi berlaku pada pH 

4.5. Walaubagaimanapun, pH akhir kesemua kultur telah menurun ke sekitar pH 4.0. 

Pencerakinan untuk enzim-enzim pengubah lignin yang terlibat dengan penguraian 

pewarna azo hanya menunjukkan kehadiran laccase (E.C. 1.10.3.2) manakala lignin 

peroksidase (E.C. 1.1 1.1.14) dan mangan peroksidase (E.C. 1.1 1.1.13) tidak dikesan. 

Profil aktiviti laccase di dalam kultur cecair pegun menunjukkan korelasi dengan 

profil penguraian pewarna azo dan adalah tertinggi di dalam kultur yang dieram pada 

suhu bilik kecuali kultur Biebrich Scarlet (30 "C). pH awal media penguraian (pH 4.5 

hingga 5.9) tidak mempunyai kesan yang bermakna ke atas aktiviti laccase kecuali di 

dalam kultur Direct Blue 71 di mana ia adalah tertinggi pada pH 5.9. Laccase yang 

telah dihasilkan oleh Isolat 5-UPM semasa penguraian pewama azo telah di separa- 

tulenkan dan apabila 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) 

digunakan sebagai substrat, didapati mempunyai nilai K,,, 0.1 mM, aktiviti optimum 

pada 50 hingga 70 "C dan pada pH 3.5 hingga 4.0 manakala ia adalah paling stabil 
© C

OPYRIG
HT U

PM



pada suhu bilik atau kebawah dan pada pH 6.0 dan 7.0. Laccase ini telah dibuktikan 

mampu mengurai pewarna azo secara langsung dengan nilai-nilai K,,, 1.5 x 10" mM, 

9.8 x lo4 mM, 1.8 x lo4 mM dan 1.8 x 104mM untuk Ponceau 2R, Orange G, Direct 

Blue 71 dan Biebrich Scarlet mengikut turutan. Walaubagaimanapun, Biebrich Scarlet 

didapati menyekat aktiviti laccase pada kepekatan yang lebih tinggi dari 0.8 g/L. 

vii 
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CHAPTER 1 

INTRODUCTION 

The modem world will be a drab and colourless place without the use of synthetic dyes. 

Indeed, synthetic dyes have largely replaced natural dyes, especially in the textile 

industry due to their generally superior qualities such as range of colours, colour 

intensity, ease of manufacture, fastness, and resistance to fading by physical, chemical 

and microbial agents (Wesenberg et al., 2003). 

Despite the advantages of synthetic dyes over natural dyes, synthetic dyes present their 

own new set of problems. The most obvious problem is aesthetic pollution of waterways 

caused by the presence of dyes leached from textile factories since they are visible even 

at low concentrations (Banat et al., 1996). In addition, the presence of dyes could also 

potentially reduce the amount of sunlight reaching the bottom of rivers and lakes and thus 

affects the ability of aquatic plants to carry out photosynthesis (Banat et al., 1996; Torres 

et al., 2003; Wesenberg et al., 2003). This will have the net effect of reducing the 

availability of oxygen in the water to other aquatic animals (Yesilada et al., 2003). 

Another more insidious problem is production of potentially carcinogenic aromatic amine 

compounds from the partial cleavage of synthetic dyes, especially from the azoic dye 

group, so called because of the presence of (-N=w-) azo bond by anaerobic bacteria 

found in wastewater treatment plants. © C
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Current azo dye removal methods usually involve physical andlor chemical treatments. 

Conventional wastewater treatment such as activated sludge and trickling filters generally 

fail to decolourise these dye effluents (Kasinath et al., 2003; Wesenberg et al., 2003) and 

as stated above, they might actually worsen the problem. These methods have many 

disadvantages. Chemical treatments produce large amounts of chemical sludge with the 

attendant disposal problems while ozone is very expensive to produce (Supaka et al., 

2004). Physical treatments are also very expensive due to the high operating expenses to 

produce and regenerate activated carbon (Shen et al., 1992). For these reasons, biological 

treatments such as utilizing the biodegradative ability of bacteria and ligninolytic fungi 

are being investigated as a viable and cost effective alternative. 

Research into bioremediation, or the use of microorganisms or their enzymes to 

biotransform the contaminated environments to their original state (Thassitou and 

Arvanitoyannis, 2001) are currently still in the early stages. In our case, many 

investigators have isolated fungi from the environment for the biodegradation of textile 

dyes for the past 20 years or so. Fungi such as Phanerochaete chlysoporium and 

Tinctporia sp., both belonging to the ligninolytic white-rot group, are among the first to 

have been shown to have the ability to degrade azo dyes (Awaluddin et al., 2001). Until 

recently however, most published research, including those that have been done in 

Malaysia have focused on these temperate species (Awaluddin et al., 2001; Levin et al., 

2004) while ignoring the rich biodiversity available in our tropical country. © C
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Production of Synthetic and Azo Dyes by Global and Malaysian 
Industries 

A dye is a chemical that is used to impart colour onto a material and is soluble in 

some stages during the application process (World Bank Group, 1999). There are 

more than ten thousand different types of synthetic dyes that are being used by the 

textile industry throughout the world (Levin et al., 2004) with production exceeding 

700 000 metric tones annually (Toh et al., 2003). 

The main synthetic dye producers of the world are China, India, Russia, Eastern 

Europe, South Korea and Taiwan with China producing the largest amount of dyes at 

200 000 metric tones annually (Wesenberg et al., 2003). In 1999, the total global dye 

production is valued at USD 6.6 billion with Asia as the largest dyestuff market at 42 

% of the total market (Wesenberg et al., 2003). Out of this percentage, 60 to 70 % of 

the total dyes produced globally are from the azo dyes group (Pinhiero et al., 2004), 

thus making this class of dye environmentally significant. Azo dyes are used by the 

textile, printing, leather, papermaking, drug and food industries due to its ease of 

manufacture, relatively non-toxic in their original chemical form, stability to 

degradation by light, temperature, detergents, oxidizers and microbial attack (Torres 

et al., 2003; Wesenberg et al., 2003). © C
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