EFFECTS OF PARTIAL ESTERS ON THE PROPERTIES OF PALM-BASED TRIMETHYLOLPROPANE ESTERS

By

ANITA BINTI ABU BAKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

November 2006

DEDICATION

To my beloved husband Mohammad Johari, my son Imran Hadi and my parents For understand and love.... Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF PARTIAL ESTERS ON THE PROPERTIES OF PALM-BASED TRIMETHYLOLPROPANE ESTERS

By

ANITA HJ. ABU BAKAR

November 2006

Chairman: Associate Professor Robiah Yunus, PhD

Faculty: Engineering

Some concerns have been raised regarding the oxidative stability of vegetable oilbased fluids. Lack of oxidative stability will increase the rate of oxidation and degradation of the oil. Oxidation causes sludge and deposits formation, clogging of oil passages and corroding the equipment that they lubricate. Earlier findings have indicated that oxidative stability is partly due to the presence of partial ester in the lubricant. The hydroxyl group present in the partial ester increases the oxidative stability of the lubricant. Thus, a wide range of palm-based trimethylolpropane esters (TMPE), which contain different percentages of partial esters, were synthesized. The palm-based TMP esters (mono esters, diesters and triesters) were esterified from palm oil methyl esters (PME) with trimethylolpropane [2-ethyl-2-(hydroxymethyl)-1,3-propanediol;TMP] and sodium methoxide (CH₃ONa) as catalyst.

Quantification of unreacted palm oil methyl esters (PME), monoesters, diesters, and triesters were performed using gas chromathography (GC), with a high temperature capillary column (SGE HT5), operated at a temperature gradient of 6 °C/min starting from 80 °C to 340 °C. The influence of operating variables (temperature, pressure, molar ratio PME:TMP and catalyst amount) on diester formation were studied and analyzed. Palm oil TMP esters containing 5 - 30 % (w/w) partial esters (monoesters and diesters) were successfully synthesized at different operating variables.

The effects of partial ester on lubrication properties were also studied. Hydroxyl group in partial esters can, under certain conditions, give a positive effect on lubrication properties such as viscosity and viscosity index, thermal oxidative stability and wear and friction. Kinematic viscosity of the TMP esters increases with the partial esters content. The optimum hydroxyl value (OHV) for thermal oxidative stability of the oils was observed at 27.2, while the optimum diesters (DE) %(w/w) in the oils for wear and friction characteristics was observed at 26.8 %(w/w), corresponding to the OHV value of 39.5.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN-KESAN SEPARA ESTER TERHADAP SIFAT-SIFAT PELINCIRAN ESTER TRIMETILPROPANA MINYAK SAWIT

Oleh

ANITA HJ. ABU BAKAR

November 2006

Pengurusi : Profesor Madya Robiah Yunus, PhD

Fakulti : Kejuruteraan

Terdapat kebimbangan telah dikemukakan berkenaan kestabilan oksida minyak pelincir berasaskan sayuran. Kekurangan sifat kestabilan oksida akan meningkatkan kadar pengoksidaan dan penurunan minyak pelincir. Pengoksidaan menyebabkan, bahan enap cemar dan endapan terhasil, menjadikan laluan minyak tersumbat dan mengkakis peralatan yang dilincirkan. Penemuan terdahulu telah menunjukkan bahawa kestabilan oksida ini sebahagiannya disebabkan oleh kewujudan separa ester di dalam minyak pelincir. Kumpulan hidroksil yang wujud dalam separa ester itu telah meningkatkan kestabilan oksida minyak pelincir tersebut. Maka, perbagai rangkaian ester trimetillolpropana (TMPE) yang berasaskan minyak sawit yang mengandungi peratusan separa ester (ester mono, ester dwiTMP dan ester triTMP) yang berbeza telah disentesiskan. Ester TMP minyak sawit telah diesterkan dari metil ester minyak sawit (PME) dengan trimetilpropana, [2-etil-2-(hidrosimetil)-1,3propanadiol;TMP] dan sodium metoksida (CH₃ONa) bertindak sebagai pemankin.

Pengkuantitian sisa ester metil minyak sawit, monoester mono, dwiester dan triester dilakukan dengan menggunakan gas kromatografi (GC), dengan turus kapilari bersuhu tinggi (SGE HT5), dioperasikan pada suhu berkala 6°C/min bermula dari 80°C hingga 340°C. Kesan pengaruh pembolehubah operasi (suhu, tekanan vakum, nisbah molar PME:TMP dan jumlah pemankin) keatas pembentukan diester telah dikaji dan dianalisiskan. Ester TMP minyak sawit yang mengandungi separa ester 5 – 30 %(w/w) (monoester and diester) telah berjaya disentisiskan pada pembolehubah operasi yang berbeza.

Kesan separa ester keatas sifat pelinciran telah dikaji. Hidroksil dalam keadaan yang tertentu boleh memberikan kesan yang positif keatas sifat-sifat pelinciran seperti kelikatan dan indek kelikatan, kestabilan oksidaa haba serta kehausan dan geseran. Kelikatan minyak pelincir meningkat dengan peningkatan kandungan separa ester di dalam minyak pelincir itu. Nilai hidroksil (OHV) yang optima untuk kestabilan oksida haba minyak pelincir adalah 27.2. Manakala peratus optima DE didalam minyak pelincir untuk sifat kehausan dan pelinciran yang baik adalah 26.8 %(w/w), iaitu yang mengandungi nilai OHV 39.5.

ACKNOWLEDGEMENTS

ALHAMDULILLAH, through His Blessings and Dignity of Allah s.w.t., this study was completed. I would first like to take this opportunity to express my sincere gratitude to my supervisor Associate Professor Dr. Robiah Yunus for her invaluable advice, tireless guidance and constant encouragement leading to the completion of this study. I also wish to thank the lecturers who served on my graduate committee; Associate professor Dr. Fakhrul-Razi Ahmadun and Dr. Luqman Chuah Abdullah. Their knowledge in a broad range of disciplines helped me gain a new perspective on biodegradable lubricant.

In addition to these lecturers, I am also indebted to the other students who have helped me in my work. Siti Zubaidah and Norhalaliza, with whom I have worked closely during my graduate program, have been capable colleagues as well as good friends. I also thank Encik. Joha, Encik. Tarmizi, Encik. Ismail and Puan Maslinda for their contributions to this research. My gratitude goes also to my friends who have provided all the moral support I could handle: Raja Izzawati, Azhari, Look Kar Yang, David, Christina and Sarina.

Most importantly, the understanding, patience and moral support of my husband, Mohammad Johari Jamaludin, my son Muhammad Imran Hadi and family are deeply appreciated. I certify that an Examination Committee has met on 21th November 2006 to conduct the final examination of Anita Binti Abu Bakar on her Master of Science thesis entitled "Effects of Partial Esters on the Properties of Palm-Based Trimethylolpropane Esters" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Thomas Choong Shean Yaw, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Saari Mustapha, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Suraya Abdul Rashid, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Abdul Latif Ahmad, PhD Professor

Faculty of Engineering Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 15 FEBRUARY 2007

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Robiah Yunus, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Fakhru'l-Razi Ahmadun, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Luqman Chuah Bin Abdullah, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date: DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or currently submitted for any other degree at Universiti Putra Malaysia or other institutions.

ANITA BINTI ABU BAKAR Date: 19 JANUARY 2007

TABLE OF CONTENTS

DEDICATION	2
ABSTRACT	3
ABSTRAK	5
ACKNOWLEDGEMENTS	7
APPROVAL	8
DECLARATION	10
LIST OF TABLES	14
LIST OF FIGURES	15
LIST OF ABBREVIATIONS	19

CHAPTER

1	INT	RODUCTION	21
		Background Objectives and Scopes of Work	21 25
2		ERATURE REVIEW	27
2			21
	2.1	Lubricant	27
	2.2	Vegetable Oil	28
	2.3	Synthetic Esters	33
	2.4	Synthesis of Vegetable Oil Based Synthetic Esters	35
		2.4.1 Modification of Fatty Acid Chains	36
		2.4.2 Modification of Carbonyl Group	38
	2.5	Chemical synthesis	40
	2.6	Hydroxyl (OH) End Group Lubricant	43
	2.7	Synthesize of Partial Esters of Palm-Based Trimethylolpropane Esters	45
	2.8	Analytical Techniques for Vegetable Based Esters	48
	2.9		50
		Based-Lubricant	
		2.9.1 TAN and Iodine value	52
		2.9.2 Hydroxyl Value (OHV)	52
		2.9.3 Pour point	54

2.9.4	Viscosity and Viscosity Index	55
2.9.5	Wear and Friction	57
	2.9.5.1 Tribological Characteristics of Hydroxyl	62
	[OH] End Group Lubricant	
2.9.6	Thermal and Oxidative Stability	65

3 EXPERIMENTAL PROCEDURE

70

3.1	Synthes	sis of Partial Esters of Palm Based	70
	Trimeth	ylolpropane Esters	
	3.1.1	Materials	70
	3.1.2	Experimental Apparatus	71
	3.1.3	Experimental Procedure	73
	3.1.4	Transesterification Reaction	74
	3.1.5	Experimental Parameter	75
	3.1.6	Product Purification	76
	3.1.7	Sampling	78
	3.1.8	Gas Chromatography (GC) Analysis	78
3.2	Testing	Method	80
	3.2.1	Total Acid Number (TAN value)	80
	3.2.2	Hydroxyl Value (OHV)	81
		3.2.2.1 Acethylation Method	82
		3.2.2.2 Phthalylation Method	84
	3.2.3	Iodine Value (IV)	85
	3.2.4	Pour Point	86
	3.2.5	Viscosity and Viscosity Index	86
	3.2.6	Wear and Friction	87
	3.2.7	Thermal and Oxidative Stability	89

4 **RESULTS AND DISCUSSIONS**

90

4.1	Effect of Time	90
4.2	Effect of Temperature	91
4.3	Effect of Vacuum Pressure	94
4.4	Effect of Reactant Molar Ratio	97
4.5	Effect of Catalyst Amount	102
4.6	Synthesis of Partial Esters of Palm-Based TMP Esters	105
4.7	Chemical and Physical Characteristic	107
	4.7.1 Chemical Characteristic	107
	(Total Acid, Hydroxyl Value and Iodine value)	
	4.7.2 Pour Point	108
	4.7.3 Viscosity and Viscosity Index	109
	4.7.4 Wear and Friction	111

4.7.5	Thermal an	d Oxidative Degradation	113
	4.7.5.1	Thermal stability	117
	4.7.5.2	Oxidative stability	119
	4.7.5.3	Thermal oxidation kinetic	124

5 CONCLUSION AND RECOMMENDATIONS 131

5.1	Conclusions	131
5.2	Recommendations for Future Work	133

REFERENCES	134
APPENDICES	140
BIODATA OF THE AUTHOR	161

LIST OF TABLES

Table		Page
2.1	Qualitative Structure-Performance Relationships for Vegetable Oils	31
2.2	Average Retention Times for Components Obtained from Reaction Between Methyl Palmitate and Methyl Laurate with Trimethylolpropane	49
2.3	Chemical and physical properties of commercial lubricant	51
4.1	Synthesis method of desired DE %	106
4.2	Chemical properties of palm based-lubricant	108
4.3	Pour points of different partial polyol esters	109
4.4	Viscosity and viscosity index of the oil samples	110
4.5	WSD and friction for various lubricant samples	112
4.6	Thermal degradation onset temperature and time	117
4.7	Temperature at 1 % weight loss	122
4.8	Oxidative onset temperature and time	128
A1	Effect of temperature	140
A2	Effect of molar Ratio	140
A3	Effect of vacuum pressure	141
A4	Effect of catalyst	141

LIST OF FIGURES

Figure		Page
2.1	(a) Fatty acid alkyl groups , (b) Example of R_1 , R_2 or R_3	30
2.2	Chemical structure of diesters and polyol esters	34
2.3	Glycerin esters critical points: β-CH-group and unsaturated fatty acid residues	36
2.4	General transesterification reaction	40
2.5	Transesterification of palm oil methyl esters (PME) with trimethylolpropane (TMP)	41
2.6	Hydrolysis of esters	42
2.7	Saponification of the produced fatty acid alkyl esters	42
Scheme 1	Transesterification reaction of TMP esters	47
Scheme 2	Reaction of DE with acetic anhydride	53
Scheme 3	Reaction of acetylated oil with KOH	54
2.8	Pour point of current lubricant	55
2.9	Four ball coefficient of friction, μ	58
2.10	Stribeck-Hersey curve	59
2.11	Schematic representation of a boundary film formed by (a) physical adsorption (b) chemical adsorption and (c) chemical reaction	61

2.2	Schematic representation of alkyne, dialkyne, alkane and dialkane formation by different types of chemisorbed anions produced from alcohols	65
2.13	Initiation, propagation and termination of triglycerides oxidation process	66
3.1	Schematic diagram of transesterification process	72
3.2	Process flow chart	73
3.3	Removal of catalyst	76
3.4	Appearance of oil samples after purification process: distillation at; left above 200 °C, right 180 °C $- 200$ °C	77
3.5	Sample of GC chromatogram	79
3.6	Viscosity tester	87
3.7	Schematic of a four-ball wear test machine	88
4.1	Effect of time on transesterification reaction at 130 °C vacuum pressure 50 mbar, catalyst amount 0.9 %(w/w), PME: TMP; 3.9:1 and reaction time 60 min	91
4.2	Effect of temperature on TE formation at vacuum pressure 20 mbar, catalyst amount 0.9 %(w/w), PME: TMP; 3.9:1	92
4.3	Effect of temperature on DE formation at vacuum pressure 20 mbar, catalyst amount 0.9 %(w/w), PME: TMP; 3.9:1	93
4.4	Effect of temperature on ME formation at vacuum pressure 20 mbar, catalyst amount 0.9 %(w/w), PME: TMP; 3.9:1	94
4.5	Effect of vacuum pressure on TE formation at 120°C, catalyst amount 0.9 %(w/w), PME: TMP; 3.9:1	95

4.6	Effect of pressure on DE formation at 120°C, catalyst amount 0.9 %(w/w), PME: TMP; 3.9:1	96
4.7	Effect of pressure on ME formation at 120°C, catalyst amount 0.9 %(w/w), PME: TMP; 3.9:1	97
4.8	Effect of molar ratio on transesterification reaction at 120°C, 0.9% (w/w) catalyst, vacuum pressure 20 mbar and reaction time 60 minutes	99
4.9	Effect of reactant molar ratio on TE formation at 120°C, 0.9 %(w/w) catalyst, vacuum pressure 20 mbar	100
4.10	Effect of reactant molar ratio on DE formation at 120°C, 0.9 %(w/w) catalyst, vacuum pressure 20 mbar	101
4.11	Effect of reactant molar ratio on ME formation at 120°C, 0.9 % (w/w) catalyst, vacuum pressure 20 mbar	102
4.12	Effect of catalyst amount on TE formation at 120°C; PME:TMP 3.9:1; vacuum pressure 20 mbar	104
4.13	Effect of catalyst amount on DE formation at 120°C; PME:TMP 3.9:1; vacuum pressure 20 mbar	104
4.14	Effect of catalyst amount on TE formation at 120°C; PME:TMP 3.9:1; vacuum pressure 20 mbar	105
4.15	Kinematic viscosities and viscosity index of various OHV of lubricant	110
4.16	Wear scar diameter (WSD)	112
4.17	Wear scar diameter (WSD) of lubricating oil	113
4.18	TG and DTG Curves for Thermal Degradation	115
4.19	TG and DTG Curves for Oxidation Degradation	116
4.20	Thermal degradation of the oil samples	118

4.21	TGA and DTG curves of the oil samples	120
4.22	TGA curves of the oil samples	122
4.23	(a) Hydroxyl functional group (b) Intermolecular	123
	hydrogen bond () in TMP esters	
4.24	Plot of $\ln\left[\frac{dC}{dT} \times \frac{1}{(1-C)} \times \beta\right]$ Vs inverse temperature (K ⁻¹); (a) sample RR, (b) sample D, (c) sample E, (d) sample F	127
4.25	Hydrogen bond formation during oxidation process	129
B1	Gas Chromatogram (Sample D)	143
B2	Gas Chromatogram (Sample E)	144
B3	Gas Chromatogram (SampleF)	145
B4	Gas Chromatogram (Sample G)	146
B5	Gas Chromatogram (SampleH)	147
B6	Gas Chromatogram (Sample I)	148
B7	Gas Chromatogram (Sample J)	149
C1	Transestersification system for synthesis of palm- based TMP esters	150
C2	Samples	151

LIST OF ABBREVIATIONS

Term	Definition
β	Heating rate, (°C/min)
А	Frequency factor (min ⁻ 1)
CoF	Coefficient of friction
DE	Diesters
DTA	Derivative thermal analysis
DSC	Differential scanning calorimetry
Ea	Activation energy (KJ/mol)
GC	Gas chromatography
HPDSC	High Pressure Differential Scanning Calorimetry
HPLC	High Performance Liquid Chromatography
IV	Viscosity index
ME	Methyl esters
ОН	Hydroxyl
OHV	Hydroxyl value (mg KOH/g sample)
PME	Palm oil methyl ester
PP	Pour point
TAN	Total acid number
TE	Triesters
TGA	Thermogravimetric analysis

TMP	Trimethylol propane
TMPE	Trimethylolpropane esters
T _{on}	Onset temperature (°C)
V	Kinematic viscosity, mm ² /s, (cSt)
WSD	Wear scar diameter