UNIVERSITY PUTRA MALAYSIA

PREVALENCE AND GENOTYPIC CHARACTERIZATION OF ANTIBIOTIC-RESISTANT SALMONELLA ISOLATED FROM DOGS, CATS AND SNAKES IN KLANG VALLEY, MALAYSIA

MUSTAPHA GONI ABATCHA

FPV 2014 19
PREVALENCE AND GENOTYPIC CHARACTERIZATION OF ANTIBIOTIC-RESISTANT SALMONELLA ISOLATED FROM DOGS, CATS AND SNAKES IN KLANG VALLEY, MALAYSIA

By

MUSTAPHA GONI ABATCHA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

May 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my parents and families.
ABSTRACT

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PREVALENCE AND MOLECULAR CHARACTERIZATION OF ANTIBIOTIC-RESISTANT SALMONELLA ISOLATED FROM DOGS, CATS AND SNAKES IN KLANG VALLEY, MALAYSIA

By

MUSTAPHA GONI ABATCHA

May 2014

Supervisor : Assoc. Prof. Zunita Zakaria, PhD
Faculty : Veterinary Medicine

Salmonellosis is a major zoonotic disease with worldwide occurrence and distribution. Salmonella species are ubiquitous in nature found in environment, humans and in intestines of wide range of animals. Most Salmonella infections in humans result from the ingestion of contaminated animal derived foods and contact with carrier animals. In veterinary medicine, antibiotics are used in livestock production, disease prevention and as supplement in feed additives. Multidrug resistant (MDR) in Salmonella is a cause of great concern in both clinical and veterinary medicine, because it limits the therapeutic options available for their treatment.

The overall goals of the study were to determine the prevalence and antibiotic susceptibility of Salmonella in dogs, cats and snakes and to investigate the presence of resistant genes and class 1 integrons by Polymerase Chain Reaction (PCR). In addition, the Salmonella isolates were also characterised using Pulsed Field Gel Electrophoresis (PFGE) to determine genetic diversity.

A total of 330 samples collected from 162 dogs, 126 cats and 42 snakes were examined for presence of Salmonella. The types of samples collected were rectal swabs from diarrheal and non-diarrheal dogs and cats at the University Veterinary Hospital at Universiti Putra Malaysia, Society for the Prevention of Cruelty to Animals (SPCA), Selangor and Dewan Bandaraya, Kuala Lumpur (DBKL), and cloacal swabs from captive and wild snakes from the Wildlife Department and Zoo Negara. Thirty-two non-repeat isolates of Salmonella enterica were identified via conventional culture, biochemical, serological and PCR methods. Of the 32 (9.7%) Salmonella isolated from the samples, the prevalence of Salmonella shedding is 9.2% (15/162) of dogs, 0.8% (1/126) of cats and 38% (16/42) of the snakes. All the Salmonella isolates were found to carry invA gene after PCR amplification. Salmonella serovars identified were S.
Typhimurium (n=5), S. Corvallis (n=10), S. Mbandaka (n=5), S. Agona (n=1), S. Poona (n=1) and S. Ruiri (n=1), and the remaining (n=9) of the isolates were untypable using the available antisera and regarded as *Salmonella enterica*.

The *Salmonella* strains were evaluated for susceptibilities towards 12 commonly used antimicrobial from seven classes including aminoglycosides, beta-lactam, phenicols, sulfonamides, cephalosporin, fluoroquinolone and tetracyclines. Fifty percent of the *Salmonella* strains were found to be resistant to the antimicrobial tested and 28% were multidrug resistant (MDR). Resistance to the following antibiotics was common among the isolates: tetracycline (40.6%), sulphamethazole-trimethoprim (18.7%), ampicillin (18.7%), chloramphenicol (15.6%), streptomycin (6.25%), enrofloxacin (12.5%), cephalexin (6.25%), cephalothin (6.25%) and amoxicillin-clavulanic acid (3.12%) was commonly seen in the *Salmonella* isolates.

Based on the resistance phenotypes, antibiotic resistant *Salmonella* strains were selected for further characterisation for their antimicrobial resistance genes. Among 10 different resistance genes investigated in 16 antibiotic resistant isolates, seven genes were detected (*blaTEM-1, strA, strB, sulII, dfrhl, tetA, and cmlA*). The DNA sequence analysis of the resistance genes amplicons showed 90-100% homology with the respective genes in GenBank. Eleven of the tested *Salmonella* strains had class 1 integrons ranging from 0.2 to 1.5 kb. The results showed that resistance genes of streptomycin (*strA, strB*), ampicillin (*blaTEM1*), sulfonamides (*Sul2*), chloramphenicol (*cm/A*), trimethoprim (*dhfrl*) and tetracycline (*tetA*) were carried on chromosomal DNA.

Molecular typing of the strains exhibited different plasmid profiles and PFGE patterns. Thirty *Salmonella* isolates were typable by PFGE generating 21 distinct pulsed-field profiles. The pulsotypes consisted of 12 to 19 *XbaI*-restricted fragments with sizes ranging from 22.5kb to 1135 kb. A wide diversity was found among the strains as evidenced by F-values, which ranged from 0.46 to 0.96. The dendrogram at >80% genetic similarity generated 9 clusters. This study confirmed that dogs might act as reservoir for antimicrobial resistance *Salmonella*. With this information, there is need for public campaign by the authority on the importance of zoonotic *Salmonella* to stakeholders in Malaysia.

Key words: Salmonella, serotyping, invA gene, resistance genes, DNA sequencing and PFGE
ABSTRAK
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PREVALEN DAN PENCIRIAN MOLEKUL SALMONELLA RINTANG ANTIBIOTIK YANG DIASINGKAN DARI ANJING, KUCING DAN ULAR DI LEMBAH KLANG, MALAYSIA.

Oleh

MUSTAPHA GONI ABATCHE

Mei 2014

Penyelia : Assc. Prof. Madya Zunita Zakaria, PhD
Fakulti : Perubatan Veterinar

Matlamat kajian ini adalah untuk menentukan prevalens serta corak kerintangan antibiotik dalam *Salmonella* yang dipencilkan dari anjing, kucing dan ular; menyiasat kehadiran gen kerintangan dan integron kelas 1 dengan kaedah Polymerase Chain Reaction (PCR). Di samping itu, *Salmonella* yang diasingkan juga dicirikan menggunakan Pulsed Field Gel elektroforesis (PFGE) untuk menentukan kepelbagaian genetik.

Kehadiran *Salmonella* diperiksa dari sejumlah 330 sampel yang diambil dari 162 anjing, 126 kucing dan 42 ular. Swab rektum daripada anjing dan kucing yang mengalami cirit-birit dan juga yang tiada simptom cirit-birit di Hospital Universiti Veterinar, Universiti Putra Malaysia, Persatuan Pencegahan Penganiayaan Haiwan (SPCA), Selangor dan Dewan Bandaraya Kuala Lumpur (DBKL), dan swab kloaka dari ular peliharaan dan liar dari Jabatan Hidupan Liar dan Zoo Negara. Tiga puluh dua pencilan *Salmonella enterica* telah diasingkan dan dikenalpasti melalui kaedah konvensional,
ujian biokimia, serologi dan PCR. Secara keseluruhannya, 32 (9.7%) *Salmonella* dikesan daripada sampel. Kelaziman Salmonella adalah 9.2% (15/162) daripada anjing, 0.8% (1/126) daripada kucing dan 38% (16/42) daripada ular. Semua pencilan didapati membawa gen *InvA*. Serovars *Salmonella* yang dikenalpasti adalah *S. typhimurium* (n=5), *S. Corvallis* (n=10), *S. Mbandaka* (n=5), *S. Agona* (n=1), *S. Poona* (n=1) dan *S. Ruiru* (n=1). Selebhihnya iaitu (n=9) adalah tidak dapat ditipkan menggunakan antisera sediada dan dianggap sebagai *Salmonella enterica*.

Corak kerintangan *Salmonella* telah diuji menggunakan 12 agen antimikrob termasuk aminoglycosides, beta-lactam, phenicols, sulfonamides, cephalosporin, flouroquinolone dan tetracyclines. Lima puluh peratus daripada *Salmonella* adalah rintang kepada agen antimikrobial yang diuji dan 28% didapati adalah MDR. Corak kerintangan terhadap antibiotik berikut adalah biasa di kalangan pencilan: tetrasiklin (40.6%), sulhamethazol-trimetoprim (18.7%), ampirisin (18.7%), kloramphenicol (15.6%), streptomisin (6.25%), enrofloxacin (12.5%), sephalexin (6.25%), sephalotin (6.25%) dan amoxicillin-klavulanik asi (3.12%) telah biasa dilihat dalam diasingkan *Salmonella*.

Berdasarkan fenotip kerintangan antimikrob, pencirian lanjut bagi pengesanan gen rintangan antimikrobial dikaji. Sejumlah tujuh gen kerintangan yang dikesan iaitu *blaTEM-1*, *StrA*, *strB*, *sulII*, *dfhr1*, *tetA* dan *cm1A* diantara 10 gen rintangan. Antibiotic yang diuji. Analisis urutan DNA gen rintangan menunjukkan 90-100% homologi dengan gen masing-masing dalam GenBank. Sebelas *Salmonella* didapati mempunyai integron kelas 1 bersaiz 0.2-1.5 kb. Hasil kajian menunjukkan bahawa gen rintangan streptomisin (*StrA*, *strB*), ampicillin (*blaTEM1*), sulfonamides (*Sul2*), kloramphenicol (*cm1A*), trimethoprim (*dhfr1*) dan tetrasiklin (*tetA*) adalah dibawa oleh plasmid. Kesemua 30 pencilan *Salmonella* dapat ditipkan oleh PFGE dengan menghasilkan dua puluh satu profil. Pulsotip adalah terdiri daripada 12 hingga 19 band *XbaI* dengan saiz antara 22.5kb untuk 1135 kb. Kepelbagaian yang tinggi ditemui di kalangan strain dan ini dibuktikan oleh nilai - F dari 0.46 kepada 0.96. Dendrogram pada > 80% persamaan genetik menjana 9 kelompok. Kajian ini mengesahkan bahawa anjing mungkin bertindak sebagai takungan untuk antimikrob rintangan *Salmonella*. Dengan maklumat ini, terdapat keperluan untuk kemenapersan awam oleh pihak berkuasa yang mengenai kepentingan zoonotik *Salmonella* kepada pihak berkepentingan di Malaysia.

Kata kunci: *Salmonella*, serotip, *invA* gen, gen rintangan, DNA sequencing dan PFGE
ACKNOWLEDGEMENTS

Thanks to almighty God for everything. He has been taking me all the way through the turns and twists of life according to his plan. My next deep gratitude is to my father Alhaji Goni Abatcha, who installed the courage, inspirations, and endurances into my education. I would like to extend my sincere gratitude to my supervisor, Assoc. Prof. Dr. Zunita Zakaria for her invaluable guidance and support throughout my candidature. Her scholarly criticisms, scrutiny and suggestions kept me going against all odds. In addition, I would like to thank Prof. Thong Kwai Lin and Assoc. Prof. Dr. Gurmeet Kaur Dhaliwal for their role as my co-supervisors for their overall assistances, contribution, swift replies and wonderful comments indeed made me a better research student.

I would like to acknowledge the staff at University Veterinary Hospital-Universiti Putra Malaysia, Society for the Prevention of Cruelty to Animals (SPCA) Selangor, Dewan Bandaraya Kuala Lumpur (DBKL), Wildlife Department and Zoo Negara for their cooperation and assistance during the early stage of my work. I am also thankful to the staff of Bacteriology Laboratory, UPM and Laboratory of Biomedical Science and Molecular Microbiology (LBSMM), University Malaya for their friendly and comforting cooperation and unreserved assistances throughout my laboratory works. I also extend my thankfulness to my lab mates and friends, Adamu Kaikabo, Yusuf Yakubu and Ehsan for their assistance and friendly cooperation during my laboratory works.
APPROVAL

I certify that a Thesis Examination Committee has met on 19th May 2014 to conduct the final examination of Mustapha Goni Abatcha on his thesis entitled “Prevalence and Genotypic Characterisation of Antibiotic Resistance *Salmonella* in Dogs, Cats and Snakes in Klang valley, Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

SITI KHAIRANI BINTI BEJO, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

SON RADU, Ph.D.
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
/Internal Examiner

ABDUL RANI BIN BAHAMAN, Ph.D.
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

KASING APUN, Ph.D.
Professor
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
(External Examiner)

Noritah Omar, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zunita Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairperson)

Gurmeet Kaur Dhaliwal, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Thong Kwai Lin, PhD
Professor
Institutes of Biological Science
Universiti Malaya
(Member)

BUJANG BIN KIM HUA T, Ph.D.
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Mustapha Goni Abatcha (GS32663)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________ Signature: ____________________
Zunita Zakaria, PhD Gurmeet Kaur Dhaliwal, PhD
(Chairperson) (Member)

Signature: ____________________
Thong Kwai Lin, PhD
(Member)
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
AKNOWLEDGEMENTS vii
APPROVAL viii
DECLARATION x
LIST OF TABLES xv
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xvii

CHAPTER

1. INTRODUCTION 1
 1.1 General introduction 1
 1.2 Study objectives 3

2. LITERATURE REVIEW 4
 2.1 Salmonella 4
 2.1.1 Historical perspective 4
 2.1.2 Classification and nomenclature 4
 2.1.3 Distribution of Salmonella in dogs, cats and snakes 6
 2.1.4 Salmonella infections 7
 2.2 Molecular typing of Salmonella 8
 2.2.1 Polymerase chain reaction (PCR) 8
 2.2.2 Pulsed field gel electrophoresis (PFGE) 8
 2.2.3 Ribotyping 9
 2.2.4 Randomly amplified polymorphic DNA (RAPD) 9
 2.2.5 Restriction fragment length polymorphisms (RFLPs) 10
 2.3 Antimicrobial and antibiotic resistance 10
 2.4 Mechanism of antibiotic resistance 11
 2.4.1 Aminoglycosides 11
 2.4.2 Beta lactams 11
 2.4.3 Chloramphenicol 14
 2.4.4 Quinolones 15
 2.4.5 Tetracycline 16
 2.4.6 Sulfonamide and trimethoprim 17
 2.5 Integrons 17
 2.6 Antibiotic resistance in Salmonella 18
3. PREVALENCE AND ANTIBIOTIC RESISTANCE PATTERN OF SALMONELLA SEROVARS FROM DOGS, CATS AND SNAKES

<table>
<thead>
<tr>
<th>3.1 Introduction</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Material and method</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1 Study ethical approval</td>
<td>21</td>
</tr>
<tr>
<td>3.2.2 Sample size calculation</td>
<td>21</td>
</tr>
<tr>
<td>3.2.3 Sampling and animals</td>
<td>21</td>
</tr>
<tr>
<td>3.2.4 Isolation and identification of Salmonella spp.</td>
<td>23</td>
</tr>
<tr>
<td>3.2.5 Phenotypic isolation of Salmonella</td>
<td>23</td>
</tr>
<tr>
<td>3.2.6 Confirmation of Salmonella by polymerase chain reaction</td>
<td>24</td>
</tr>
<tr>
<td>3.2.6.1 DNA extraction</td>
<td>24</td>
</tr>
<tr>
<td>3.2.6.2 Primers set and PCR amplification program</td>
<td>24</td>
</tr>
<tr>
<td>3.2.6.3 Gel electrophoresis and documentation</td>
<td>24</td>
</tr>
<tr>
<td>3.2.7 Antimicrobial susceptibility testing</td>
<td>24</td>
</tr>
<tr>
<td>3.3 Statistical analysis</td>
<td>25</td>
</tr>
<tr>
<td>3.4 Results</td>
<td>25</td>
</tr>
<tr>
<td>3.5 Discussion</td>
<td>33</td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>35</td>
</tr>
</tbody>
</table>

4. DETECTION OF ANTIMICROBIAL RESISTANCE GENES AND CLASS 1 INTEGRON IN THE SALMONELLA SEROVARS BY PCR

<table>
<thead>
<tr>
<th>4.1 Introduction</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Materials and methods</td>
<td>37</td>
</tr>
<tr>
<td>4.2.1 Bacterial strains</td>
<td>37</td>
</tr>
<tr>
<td>4.2.2 Detection of antimicrobial resistance genes</td>
<td>37</td>
</tr>
<tr>
<td>4.2.2.1 Preparation of DNA template</td>
<td>37</td>
</tr>
<tr>
<td>4.2.2.2 Specific oligonucleotide primers reaction mixture and cycling condition for amplification of resistance genes</td>
<td>37</td>
</tr>
<tr>
<td>4.2.3 Detection of Class 1 integron</td>
<td>40</td>
</tr>
<tr>
<td>4.2.3.1 Preparation of DNA template (Boiling method)</td>
<td>40</td>
</tr>
<tr>
<td>4.2.3.2 Specific oligonucleotide primers for amplification of class 1 integrons</td>
<td>40</td>
</tr>
<tr>
<td>4.2.3.3 Reaction mixture and cycling condition</td>
<td>40</td>
</tr>
<tr>
<td>4.2.4 Detection of PCR products of the antibiotic resistance genes and class 1 integrons</td>
<td>41</td>
</tr>
<tr>
<td>4.2.5 DNA sequencing</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>41</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>50</td>
</tr>
<tr>
<td>4.5 Conclusion</td>
<td>52</td>
</tr>
</tbody>
</table>
5. CHARACTERIZATION AND GENETIC DIVERSITY OF SALMONELLA SEROVARS BY PULSED FIELD GEL ELECTROPHORESIS (PFGE). 53
 5.1 Introduction 53
 5.2 Materials and methods 54
 5.2.1 Bacterial strains 54
 5.2.2 Preparation of agarose plugs 54
 5.2.3 Lysis of cells in agarose plugs 54
 5.2.4 Washing of agarose plugs 54
 5.2.5 Restriction endonuclease digestion of chromosomal DNA by XbaI 54
 5.2.6 Electrophoresis (PFGE) condition 55
 5.2.7 Staining and documentation of PFGE agarose gel 55
 5.2.8 Cluster analysis 56
 5.3 Results 56
 5.4 Discussion 63
 5.5 Conclusion 65

6. SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 66

REFERENCES 68
APPENDICES 90
BIODATA OF STUDENT 107
LIST OF PUBLICATIONS 108
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Number of serovars in each species and subspecies of Salmonella</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of samples number and location of the study</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Prevalence of Salmonella spp. in dogs, cats and snakes</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Prevalence and categorical distribution of Salmonella spp. with respect to animals sampled.</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Salmonella serovars identified by Kauffman white scheme classification</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Percentage of Salmonella serovars sensitive to the antimicrobials tested</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Percentage of Salmonella serovars resistant to the antimicrobials tested</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Antimicrobial susceptibility profiles in Salmonella serovars</td>
<td>31</td>
</tr>
<tr>
<td>3.8</td>
<td>Multidrug resistance patterns, serovars of Salmonella strains isolated from animals sample</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Grouping antimicrobial resistance genes for multiplex-PCRs</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Primer sequences, PCR conditions and source of primers for amplification of antimicrobial resistance genes</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Primers sequence used for amplification of class 1 integron</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Resistance genes amplified from Salmonella strains</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Occurrence of antibiotic resistance genes among Salmonella strains</td>
<td>46</td>
</tr>
<tr>
<td>4.6</td>
<td>Occurrence of integron among antibiotic resistance Salmonella strains</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>Percentage of integron profiles of Salmonella strains</td>
<td>49</td>
</tr>
<tr>
<td>5.1</td>
<td>Pre-restriction buffer mixture for PFGE</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Restriction enzyme mixture for PFGE</td>
<td>55</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of similarity analyses of PFGE patterns depicted in the dendrogram</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Presumptive Salmonella on XLD selective medium</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Presumptive Salmonella on BGA selective medium</td>
<td>26</td>
</tr>
<tr>
<td>3.3 Laboratory test for identification of Salmonella based on biochemical reaction</td>
<td>27</td>
</tr>
<tr>
<td>3.4 Representative of PCR amplification of invA (284bp) genes</td>
<td>27</td>
</tr>
<tr>
<td>3.5 AST by Kirby Bauer disc diffusion method</td>
<td>29</td>
</tr>
<tr>
<td>4.1 Representative of PCR amplification of tetA (958bp) genes in Salmonella strains</td>
<td>42</td>
</tr>
<tr>
<td>4.2 Representative of PCR amplification of strA (548bp) and strB (507bp) genes</td>
<td>42</td>
</tr>
<tr>
<td>4.3 Representative of PCR amplification of cm1A (393bp) genes</td>
<td>43</td>
</tr>
<tr>
<td>4.4 Representative of PCR amplification of sul2 (293bp) and dhfr1 (220bp) genes</td>
<td>43</td>
</tr>
<tr>
<td>4.5 Representative of PCR amplification of blaTEM1 (859bp) genes</td>
<td>44</td>
</tr>
<tr>
<td>4.6 Representative 1.0% agarose gel showing results of PCR amplification for detect class Integron after optimization (A)</td>
<td>47</td>
</tr>
<tr>
<td>5.1 Representative PFGE-XbaI profiles of different Salmonella serovars isolated (A)</td>
<td>57</td>
</tr>
<tr>
<td>5.1 Representative PFGE-XbaI profiles of different Salmonella serovars isolated (B)</td>
<td>58</td>
</tr>
<tr>
<td>5.1 Representative PFGE-XbaI profiles of different Salmonella serovars isolated (C)</td>
<td>59</td>
</tr>
<tr>
<td>5.2 Dendrogram showing the results of cluster analysis of the PFGE patterns of XbaI-digested DNA from Salmonella strains</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

> Greater than
≥ Same or greater than
~ Approximately
= Equals to
°C Degree Celcius
µl Microliter
µm Micrometer
µg Microgram
% Percent
AMP Ampicillin
AMC Amoxicillin-clavuculanic acid
AAC Aminoglycoside acetyltransferase
ATCC American Type Culture Collection
BGA Brillian Green Agar
bp basepair
BSA Bovine Serum Albumin
C Chloramphenicol
CDC Centers for Disease control and Prevention
Cip Ciprofloxacin
CL Cephalexin
CN Gentamicin
D Discriminatory Power
dH2O Distilled water
ddH2O Double distilled water
DHFR Dihydrofolate reductase
DNA Deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic
ELISA Enzyme-linked immunosorbent assay
ENR Enrofloxacin
EtBr Ethidium Bromide
EtOH Ethanol
FDA Food and Drug Administration
Fig. Figure
g Gram
HCL Hydrochloric acid
K Kanamycin
KF Cephalothin
Kb Kilobase pair
LB Luria-Bertani
LIA Lysine Iron Agar
LPS Lipopolisacharide
M Molar
MDR Multi Drug Resistant
MH Mueller-Hinton
mM Milimolar
mg Miligram
ml Mililiter
mm Milimeter
N Neomycin
NA Nutrient agar
NA Nalidixic Acid
NCCLS National Committee for Clinical Standard
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed field gel electrophoresis</td>
</tr>
<tr>
<td>Pmol</td>
<td>picomole</td>
</tr>
<tr>
<td>Psi</td>
<td>Pound per square inch</td>
</tr>
<tr>
<td>R</td>
<td>Resistant</td>
</tr>
<tr>
<td>Ref.</td>
<td>Reference</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>S</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>SIM</td>
<td>Sulpha Indole Motility</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>Spp.</td>
<td>Species</td>
</tr>
<tr>
<td>Sxt</td>
<td>Sulfonamides-trimethoprim</td>
</tr>
<tr>
<td>TE</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate-EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>Tn</td>
<td>Transposon</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (Hydroxymethyl) methylamine</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweighted pair group arithmetic means methods</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per unit volume</td>
</tr>
<tr>
<td>XLD</td>
<td>Xylose Lysine Desoxycholate</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1 General introduction

Salmonellosis constitutes a major public health burden and represents a significant cost to society in many developed and developing countries. Additionally, Salmonella is a common intestinal inhabitant in a broad range of animals, including mammals, reptiles, birds and insects. Most cases of human infection are associated with the consumption of contaminated food products such as beef, pork, poultry meat, eggs, vegetables, juices and other kind of foods. Infections may also be associated with the contact between humans and infected animals (Freitas et al., 2010).

Animals commonly infected with Salmonella which may pose a risk to humans, include amphibians, birds, cats, dogs, fish, guinea pigs, hamsters, horses, mice, rabbits, lizards, snakes, and turtles. According to literature reports, the last three (lizards, snakes, and turtles) are responsible for the majority of human salmonellosis outbreaks (Bruins et al., 2006; Corrente et al., 2006; CDC, 2008a; Bertrand et al., 2008).

Dogs and cats have been commonly reported to be the carriers of Salmonella spp. worldwide and have the potential to serve as sources of exposure or infection for humans (Van Immerseen et al., 2004; Chang et al., 2011). It was reported that the intestinal carriage of Salmonellae is more common than the prevalence of clinical disease in dogs. The frequency of faecal isolation of Salmonella spp. from clinically healthy dogs was reported to be between 0.0% and 43.0% (Sanchez et al., 2002). According to Polpakdee, et al., (2012), the prevalence of Salmonella amongst dogs in Thailand is 12.4% and in cats is 9.0% with the predominant serovars identified in dogs as S. Stanley, S. Risen, S. enterica serovar (4, 5, 12), S. Weltevreden and S. Typhimurium (14.52%, 12.90%, 11.29%, 11.29% and 9.68 %, respectively) and those in cats as S.Weltevreden, S.Eastbourn, S.Typhimurium, S.Virchow and S.Hvittingfoss (44.44%, 22.22%, 11.11%, and 11.11%, respectively).

Reptiles are very common carriers of Salmonella (Corrente, 2003; Jong et al., 2005). A recent increase in the popularity of exotic reptile pets has resulted in an increase in the number of reptile-associated salmonellosis (Center for Disease Control and Prevention, 1995b). According to Mermin et al. (2004), approximately 1.4 million human cases of Salmonella infection occur each year in the USA within estimated 74,000 being the result of exposure to pet reptiles and amphibians.

In veterinary medicine antibiotics are used in livestock production, disease prevention and as supplement in feed additives (Soto et al., 1999). The use of antibiotics in animals disrupts the normal flora of the intestine, resulting in the emergence of antibiotic-resistant Salmonella strains and prolonged faeces shedding of these organisms into the environment (Araque et al., 2009). Interest in antimicrobial resistance in companion
animals has increased; the emergence and persistence of antibiotic resistance in *Salmonella* spp. continue to pose serious risks to human health (Joseph *et al*., 2008).

Antibiotic resistant *Salmonella* have been found in dogs and cats. Most of the resistant *Salmonella* strains were serovars Heidelberg, Kentucky and Indiana. *Salmonella* Heidelberg is the most common from dogs in USA and is resistant to amoxicillin/clavulanic, ampicillin, cefoxitin, ceftiofur and ceftriazone (Guardabassi *et al*., 2004; Eric *et al*., 2011). In another study, serotypes Typhimurium, Enteritis, Bovismorbois isolated from cats were resistant to ampicillin, chloramphenicol and tetracycline while 4:i:- strains (resistant to ampicillin, chloramphenicol, sulfonamides, trimethoprim, and sulfamethoxazole/trimethoprim) (Van Immerseel *et al*., 2004). *S*. Typhimurium was the serovar with the widest range of antimicrobial resistance. In exotic reptiles, it was found to be resistant to ampicillin, chloramphenicol, gentamicin, streptomycin, trimethoprim-sulfamethoxazole, and tetracycline (Chen *et al*., 2010). These are traditional antimicrobial agents used clinically in humans.

Recently multidrug resistant (MDR) strains have emerged, presumably due to the extensive use of antimicrobial agents both in humans and animals (Tennant *et al*., 2010). These include the recent identification of MDR *Salmonella* Typhimurium strain from pets and reptile animals (Freitas *et al*., 2010). MDR in *Salmonella* is a cause of great concern in both clinical and veterinary medicine, because it may limit the therapeutic options available for treatment (Glynn *et al*., 1999; Van Duijkeren *et al*., 2003). The fatality rate for people infected with antibiotic-resistant *Salmonella* strains is 21 times greater than for individuals infected with non-antibiotic resistant *Salmonella* strains (Tekeli, 2006).

Since last decade, concerns have arisen on the emergence and spread of multidrug-resistant Typhimurium strains, especially the multidrug-resistant ACSSuT type, in companion and reptile pet animals (Rabsch *et al*., 2001). Recently, *S*. Typhimurium from cats was found to be resistant to a single drug such as ampicillin or chloramphenicol, while most strains from the group-housed cats (same clone) were resistant to ampicillin, chloramphenicol, and tetracycline (Fillip Van *et al*., 2004). Resistance genes were found to be *blaTEM* (ampicillin), *cat* (chloramphenicol), and *tetA* (tetracycline). The resistance genes in the multidrug-resistant strains were found in the integrons which are located in the genomic island of the *Salmonella* (Boyd *et al*., 2001).

To date, very little data has been published on the antimicrobial resistance mechanism among *Salmonella* from dogs, cats and snakes in Malaysia. Based on the review of current literatures, the role of the animals in the dissemination of antimicrobial resistance has not been given accorded attention. Most of the studies on the prevalence and characterization of *Salmonella* serovars by antibiogram, resistance genes, class1 integrons and Pulsed Field Gel Electrophoresis (PFGE) reported in the last few years focused on isolates from food animals. However, studies in companion and exotic reptiles are limited and at present, there is a paucity of data regarding molecular mechanisms, as well the risk factors associated with transmission of antimicrobial resistance to humans.
The aim of this study was to obtain more detailed information and to achieve better discrimination of *Salmonella* strains using a combination of methods. Antimicrobial resistance testing was carried out for detection of antibiotic resistance genes (*bla*TEM1, *straA, straB, cat1, cat2, cmlA, sul2, dfhrl, tetA, tetB*), and class 1 integrons by using Polymerase Chain Reaction. Furthermore, using PFGE to subtype the *Salmonella* strains.

1.2 Study objectives

1. To determine the prevalence and antibiotic resistance pattern of *Salmonella* spp. isolated from dogs, cats, and snakes in Klang Valley, Malaysia.
2. To detect the presence of the antimicrobial resistance genes and class 1 integron in the *Salmonella* isolates.
3. To determine the genetic diversity of the *Salmonella* strains using Pulsed Field Gel Electroporesis.
REFERENCES

Center for Food Security and Public Health, Iowa State University (CFSPH), (2011). Non-
Typhoidal Salmonellosis. (http://www.cfsph.iastate.edu/DiseaseInfo/notes/SalmonellosisNontyphoidal)

and Brachyspira surveillance in feces of wild-caught snakes in Thailand. Proceedings 7th

Chang, Y.C., Chuang, H. L., Chiu, C. C., Yeh, K. S., Chang, C. C., Hsuan, S. L., Lai1, T.C.,
island 1 and class 1 integron in Salmonella isolates from stray dogs., African Journal of
Microbiology Research 5(23): 3907-3912.

resistance of foodborne pathogens isolated from food products in China. Foodborne

(2010). Prevalence and antimicrobial susceptibility of salmonellae isolates from reptiles

Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from

Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of
Salmonella enterica serotype Enteritidis in Hong Kong. Journal of Antimicrobial
Chemotherapy 56:586-589.

molecular biology, and epidemiology of bacterial resistance. Microbiology Molecular

Cimons, M. (2000). Rapid food-borne pathogen ID system is making a difference. ASM News

Clinical Laboratory Standards Institute (2009). Performance standards for antimicrobial
susceptibility testing. Sixth informational supplement.CLSI document M100-S16. CLSI
940 west valley road, suite 140, Wayne, Pennsylvania 19087-1898, USA, ISBN 1-56238-
5887.

Salmonella. Veterinary Research 32:291-300.

multidrug resistance in Salmonella enterica Typhimurium DT104. Veterinary
Research,32:301–310.

coli and Salmonella isolates from food animals and humans. Antimicrobial Agents Chemotherapy 45:2716-2722.

