NUMERICAL SIMULATION OF CYCLONE EFFICIENCY AND PRESSURE DROP

JOLIUS GIMBUN.

FK 2004 46
NUMERICAL SIMULATION OF CYCLONE EFFICIENCY AND PRESSURE DROP

JOLIUS GIMBUN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2004
NUMERICAL SIMULATION OF CYCLONE EFFICIENCY AND PRESSURE DROP

By

JOLIUS GIMBUN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Partial Fulfilment of the Requirements for the Degree of Master of Science

May 2004
Kasarahan kāīd kumaā dokōā iī āpā om āmmā
Robert Gimbun G. & Marry Murinah R.

Sunduan di pinowoyo nu
Ot tutumatanud do kapusanku

Id kotumbayaan ku 'd kumaa 'd kinosunduhon 'd
Payat di 'Aki Montuk'
The Department of Environment Malaysia (DOE) has been regulating particulate emission since the 1978. More stringent environmental regulations have resulted in considerable research into ways of reducing harmful and gloomy particulate emissions. Cyclones are probably the most commonly used means of separating dust from gases, controlling pollution, collecting particulate product or recovering catalyst particles from fluidised reactors. Their popularity is due to low maintenance and investment costs. Cyclone design maybe simple but models use to predict the cyclone efficiency and pressure drop are not always accurate. The objective of this study is to carry out simulation via a commercial spreadsheet, MS EXCEL, and CFD code FLUENT 6.1, on cyclone design, efficiency, and pressure drop for particulate emission control.

In this study, CFD code FLUENT and four cyclone collection models earlier developed by other researchers are used for prediction of cyclone efficiency. This study focuses on various operating conditions of cyclone and the simulation result is then verified via experimental data published in the literature. The model with the best prediction on experimental data is then used to evaluate the effects of cyclone configuration, dimension, and variable on its collection efficiency.

The cyclone pressure drop calculations are performed using CFD and empirical models adopted from the literature. These four empirical models and CFD are compared with presented experimental data available in the literature.
All the modelling and simulation of cyclone efficiency and pressure drop are proved to be satisfactory when compared with the presented experimental data. The CFD simulations and Li and Wang model predict excellently the cyclone cut-off size for all operating conditions with a deviation of 3 and 6% from the experimental data respectively. The CFD simulations also predict excellently the cyclone pressure drop under different temperature and inlet velocity with a maximum deviation of 3% from the experimental data. Specifically, results obtained from the computer modelling exercise have demonstrated that CFD and Li and Wang model is a best method of modelling cyclones collection efficiency and pressure drop.

The result or finding obtained from the research work can be used to develop a cyclone with greater separation efficiency, which is capable of removing up to 99% of PM$_5$. This cyclone can then be used for particulate pollutant control from industrial factory to the atmosphere.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk Ijazah Master Sains dalam Kejuruteraan Alam Sekitar.

SIMULASI BERANGKA KECEKAPAN DAN KEHILANGAN TEKANAN SIKLON

Oleh
JOLIUS GIMBUN
Mei 2004

Pengerusi : Chuah Teong Guan, Ph.D.
Fakulti : Kejuruteraan

Dalam kajian ini kod CFD FLUENT dan koleksi model-model siklon yang telah dirumuskan oleh penyelidik – penyelidik terdahulu digunakan dalam simulasi kecekapan siklon. Kajian tertumpu kepada operasi siklon pada keadaan yang berbeza dan keputusan simulasi akan dibuktikan kesahihannya menggunakan data eksperimen. Model yang menunjukkan pengiraan yang paling hampir dengan nilai eksperimen kemudian digunakan dalam kajian terhadap kesan konfigurasi, dimensi, dan pemboleh ubah siklon kepada kecekapannya.
Kehilangan tekanan dalam siklon dikira menggunakan CFD dan model - model empirikal yang diperolehi daripada bahan - bahan rujukan. Kiraan keempat-empat model dan CFD kemudian dibandingkan dengan data eksperimen.

Keseluruhan, semua keputusan simulasi tekanan dan kecekapan siklon terbukti memuaskan jika dibandingkan dengan data eksperimen. Simulasi dengan menggunakan CFD dan Model Li dan Wang memberikan kiraan yang tepat untuk saiz kritikal atau ‘cut-off size’ silkon dalam semua keadaan dengan penyimpangan 3 dan 6% daripada data eksperimen. Simulasi CFD juga mampu membuat perkiraan yang baik untuk kehilangan tekanan dalam siklon dengan penyimpangan maksimum 3% daripada data eksperimen. Secara spesifiknya, keputusan daripada simulasi berkomputer menunjukkan CFD adalah cara terbaik untuk mensimulasikan kecekapan dan kehilangan tekanan siklon.

Keputusan dan penemuan kajian dapat digunakan untuk merekabentuk siklon berkecekapan tinggi, dengan kemampuan untuk menyingkirkan sehingga 99% daripada PM5. Siklon ini kemudian akan digunakan sebagai alat kawalan pencemaran habuk dari kilang atau lain lain industri.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor and chairman of the supervisory committee, Dr. Chuah Teong Guan, my supervisory committee Dr. Thomas Choong Shean Yaw and Assoc. Prof. Dr. Fakhru'l-Razi Ahmaddun for constantly guiding and encouraging me throughout this study. Thanks a lot for giving me a professional training, advice and suggestion to bring this thesis to its final form.

I would like to thank Dr. Tom Fraser, Fluent India and Fluent Europe UK for their guidance and support on the modelling and simulation of cyclone pressure drop using CFD Fluent.

I am grateful to the staff of Department of Chemical and Environmental Engineering, Faculty of Engineering, and Graduate Study Office Universiti Putra Malaysia for their ‘cheerfulness and professionalism’ in handling their work. For GSO and UPM, thanks for letting me graduate ‘much faster than I can’ with a ‘very short’ viva waiting time and ‘very few and straight forward’ procedure of graduating. And last, but not least I thank my parents for their continuous support while completing this thesis.

It was a dark & stormy night...

Joe 2003
I certify that an Examination Committee met on 26th May 2004 to conduct the final examination of Jolius Gimbun on his Master of Science thesis entitled “Numerical Simulation of Cyclone Efficiency and Pressure Drop” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MD. AMRAN MD. SALLEH, Ph.D.
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

IYUKE SUNNY EAYEGBEMU, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

MEDYAN RIZA, Ph.D.
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

SITI MASRINDA TASIRIN, Ph.D.
Associate Professor
Department of Chemical and Process Engineering
Faculty of Engineering
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 JUL 2004
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follow:

CHUAH TEONG GUAN, Ph.D.
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

THOMAS CHOONG SHEAN YAW, Ph.D.
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

FAKHRU’L-RAZI AHMADDUN, Ph.D.
Associate Professor/ Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 AUG 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or co currently submitted for any other degrees at UPM or other institutions.

JOLIUS GIMBUN

Date: 2 June 2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

I. INTRODUCTION

1.0 Air Pollution 1.1
1.1 Particulate Emission 1.1
1.2 Regulation of Particulate Emission 1.3
1.3 Cyclone Separators 1.5
1.4 Alternative Dust Removal Techniques 1.6
1.5 Problem Statement 1.8
1.6 Objectives 1.10
1.7 Applications 1.12
1.8 Applications 1.13

II. LITERATURE REVIEW

2.0 Introduction 2.1
2.1 Operating Principles of Cyclone Separators 2.2
2.2 Cyclone Design 2.3
2.3 Cyclone Simulation in MS Excel Spreadsheet 2.4
2.4 Cyclone Modelling and Simulation 2.5
2.5 Cyclone Efficiency Empirical Models 2.10
2.5.1 Lapple Model 2.10
2.5.2 Koch and Licht Model 2.11
2.5.3 Li and Wang Model 2.13
2.5.4 Iozia and Leith Model 2.15
2.6 Pressure Drop Empirical Models 2.16
2.7 Computational Fluid Dynamics Approach ... 2.18
2.7.1 Governing Equations 2.21
2.7.2 Turbulence Models 2.23
2.7.3 Particle Transport 2.26

III. RESEARCH METHODOLOGY

3.0 Introduction 3.1
3.1 Computation Tools 3.1
3.2 Overall Research Methodology 3.2
3.3 Spreadsheet Simulation 3.3
3.4 Detailed on CFD Modelling 3.4
3.4.1 Program structure 3.4
IV. STUDY ON CYCLONE COLLECTION EFFICIENCY
3.4.2 Problem solving steps 3.5
3.4.3 CFD modelling of cyclone 3.6

4.0 Prediction of Cyclone Collection Efficiency 4.1
4.0.1 Efficiency prediction under ambient condition 4.3
4.0.2 Efficiency prediction under different operating conditions 4.6
4.0.3 Cut-off size prediction 4.8

4.1 Effect of Particle-Fluid Variable on Cyclone Efficiency 4.9
4.1.1 Effect of air-particle density difference 4.9
4.1.2 Effect of inlet velocity 4.10
4.1.3 Effect of temperature 4.11
4.1.4 Effect of re-entrainment 4.12

4.2 Efficiency Comparison of Cyclone of Different Dimension 4.13
4.2.1 Efficiency comparison of cyclone of standard configurations 4.14
4.2.1.1 Efficiency of different cyclone configurations of similar diameter 4.14
4.2.1.2 Efficiency of different cyclone configurations of equal capacity 4.15
4.2.2 Effect of dimensions to cyclone efficiency 4.17
4.2.2.1 Cyclone inlet width 4.17
4.2.2.2 Cyclone diameter effect 4.18

4.3 Summary 4.19

V. STUDY ON CYCLONE PRESSURE DROP 5.1
5.0 Overview 5.1
5.1 Pressure Drop Prediction under Different Inlet Velocity 5.2
5.2 Pressure Drop Prediction in Different Operating Temperature 5.4
5.3 Discussion 5.6
5.4 Summary 5.8

VI. CONCLUSION 6.1
6.0 Conclusion 6.1
6.1 Future Work 6.2

REFERENCES R.1
APPENDICES A.1
BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Potentially Significant Air Pollution Sources in Malaysia, 1996</td>
<td>1.2</td>
</tr>
<tr>
<td>(DOE, 1996)</td>
<td></td>
</tr>
<tr>
<td>1.2 Environment Quality (Clean Air)</td>
<td>1.5</td>
</tr>
<tr>
<td>1.3 Summary of cyclones applications</td>
<td>1.13</td>
</tr>
<tr>
<td>2.1 Cyclone geometry used in this simulations</td>
<td>2.4</td>
</tr>
<tr>
<td>2.2 Review on recent advances in the cyclone modelling and simulation</td>
<td>2.6</td>
</tr>
<tr>
<td>4.1 Comparison of measured and predicted cut-off size of different</td>
<td>4.8</td>
</tr>
<tr>
<td>cyclones</td>
<td></td>
</tr>
<tr>
<td>4.2 Different Cyclone Configurations with Similar Diameter</td>
<td>4.15</td>
</tr>
<tr>
<td>4.3 Different Cyclone Configurations with Equal Capacity</td>
<td>4.16</td>
</tr>
<tr>
<td>6.1 Summary of Pressure Drop Prediction on Different Inlet Velocity</td>
<td>6.9</td>
</tr>
<tr>
<td>6.2 Summary of Pressure Drop Prediction of Different Operating</td>
<td>6.9</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Stairmand high efficiency reverse flow cyclone</td>
<td>1.7</td>
</tr>
<tr>
<td>2.1</td>
<td>Flow pattern in tangential inlet cyclone</td>
<td>2.3</td>
</tr>
<tr>
<td>2.2</td>
<td>Tangential cyclone configuration</td>
<td>2.3</td>
</tr>
<tr>
<td>3.1</td>
<td>Computation tools (HP Workstation XW8000)</td>
<td>3.1</td>
</tr>
<tr>
<td>3.2</td>
<td>Research methodology</td>
<td>3.2</td>
</tr>
<tr>
<td>3.3</td>
<td>Spreadsheet simulation steps</td>
<td>3.3</td>
</tr>
<tr>
<td>3.4</td>
<td>Basic program structure</td>
<td>3.4</td>
</tr>
<tr>
<td>3.5</td>
<td>Steps on CFD analysis</td>
<td>3.6</td>
</tr>
<tr>
<td>3.6</td>
<td>Computational grid creation</td>
<td>3.7</td>
</tr>
<tr>
<td>3.7</td>
<td>Iteration (Solver execution)</td>
<td>3.7</td>
</tr>
<tr>
<td>3.8</td>
<td>Convergence and static pressure report</td>
<td>3.8</td>
</tr>
<tr>
<td>3.9</td>
<td>Static pressure contour</td>
<td>3.8</td>
</tr>
<tr>
<td>3.10</td>
<td>Particle trajectories</td>
<td>3.9</td>
</tr>
<tr>
<td>3.11</td>
<td>Particle trajectories report</td>
<td>3.9</td>
</tr>
<tr>
<td>4.1</td>
<td>CFD surface mesh for A) Kim and Lee (1990), B) Stairmand High Efficiency,</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>and C) Bohnet (1995) cyclone</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Particle trajectories from CFD simulation of different particle size in the</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Bohnet cyclone at T = 1073 K</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Calculated and measured collection efficiencies for Kim and Lee (1990)</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>cyclone I (P = 1 Bar, T = 293 K, (v_i) = 4.25 m/s). Data point from</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kim and Lee (1990)</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Calculated and measured collection efficiencies for Stairmand high</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>efficiency cyclone (P = 1 Bar, T = 293 K, (v_i) = 15 m/s). Data point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from Dirgo and Leith (1985)</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Calculated and measured collection efficiencies for Stairmand high</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>efficiency cyclone (P = 1 Bar, T = 293 K, (v_i) = 5 m/s). Data point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from Dirgo and Leith (1985)</td>
<td></td>
</tr>
</tbody>
</table>
Calculated and measured collection efficiencies for Stairmand high efficiency cyclone ($P = 1.7$ Bar, $T = 293$ K, $v_i = 11$ m/s). Data point from Ray et al. (2000)

Separation efficiency of Bohnet (1995) cyclone at high temperature ($P = 1$ Bar, $T = 1073$ K, $v_i = 8.61$ m/s). Data point from Bohnet (1995)

Li and Wang modified model predictions at different particle density

Effect of inlet gas velocity on cyclone performance

Effect of operating temperature on cyclone performance

Li and Wang model prediction of different cyclone dimension of similar diameter

Li and Wang model prediction of different cyclone dimension of equal capacity

Li and Wang model predictions at different inlet width

Flow pattern of different cyclone inlet width

Li and Wang model efficiency prediction of different cyclone diameter

Velocity magnitude of a cyclone of a different diameter from CFD analysis

CFD surface mesh for A) Stairmand High Efficiency, and B) Bohnet (1995) cyclone

Evolution of pressure drop with inlet velocity. Comparison between data presented by Bohnet (1995), the predictions of CFD and four empirical models ($P = 1$ bar, $T = 293$ K, $D = 150$ mm, Geometry Bohnet (1995))

2D and 3D Map of static pressure of Bohnet (2001) cyclone for inlet velocity of 4.62 m/s and temperature 293 K (Unit in Pa)

Evolution of pressure drop with inlet velocity. Comparison between data presented by Graffiths and Boysan (1996), the predictions of CFD and four empirical models ($P = 1$ bar, $T = 293$ K, $D = 0.305$ m, Geometry Stairmand high efficiency
5.5 3D Map of static pressure of Stairmand cyclone for inlet velocity of 20 m/s and temperature 293 K (Unit in Pa) 5.4

5.6 Evolution of pressure drop with operating temperature. Comparison between data presented by Bohnet (1995), the predictions of CFD and four empirical models ($Q = 14.35$ m/s, $T = 293 - 1123$ K, $D = 150$ mm, Geometry Bohnet (1995)) 5.5

5.7 Evolution of pressure drop with operating temperature. Comparison between data presented by Bohnet (1995), the predictions of CFD and four empirical models. ($Q = 11.48$ m/s, $T = 293 - 1123$ K, $D = 150$ mm, Geometry Bohnet (1995)) 5.5

5.8 3D Map of static pressure of Bohnet (1995) cyclone for inlet velocity of 11.48 m/s and temperature 950 K (Unit in Pa) 5.6
LIST OF SYMBOLS AND ABBREVIATIONS

\[L = \text{natural length (m)} \]
\[a = \text{cyclone inlet height (m)} \]
\[b = \text{cyclone inlet width (m)} \]
\[D = \text{cyclone body diameter (m)} \]
\[D_e = \text{cyclone gas outlet diameter (m)} \]
\[H = \text{cyclone height (m)} \]
\[h = \text{cyclone cylinder height (m)} \]
\[S = \text{cyclone gas outlet duct length (m)} \]
\[B = \text{cyclone dust outlet diameter (m)} \]
\[c_{io}, c_i = \text{particle inlet and outlet concentration (kg/m}^3\text{)} \]
\[d = \text{particle diameter (m)} \]
\[D_r = \text{radial turbulent diffusion coefficient} \]
\[d_{pc} = \text{cut particle diameter collected with 50\% efficiency (m)} \]
\[n = \text{cyclone vortex exponent (0.5 < n < 1)} \]
\[Q = \text{volumetric gas flow rate (m}^3\text{/s)} \]
\[r = \text{radial dimension, } r_w = D/2 \text{ and } r_n = D_e/2 (\text{m)} \]
\[R = \text{radius (m)} \]
\[T = \text{absolute temperature (K)} \]
\[w = \text{radial particle velocity (rad/s)} \]
\[w_m, w_w = \text{radial particle velocity at } r = r_n \text{ and } r = r_w \]
\[\alpha = \text{particle bounce or re-entrainment coefficient} \]
\[\lambda = \text{characteristic value} \]
\[\eta = \text{efficiency} \]
\[\rho_g = \text{gas density (kg/m}^3\text{)} \]
\[\rho_p = \text{particle mass density (kg/m}^3\text{)} \]
\[\mu = \text{Dynamic gas viscosity (m}^2\text{/s)} \]
\[\theta = \text{angular coordinate} \]
\[d_i = \text{diameter of particle in size range } i \text{ (m)} \]
\[g = \text{gravity acceleration (m/s}^2\text{)} \]
\[G = \text{cyclone configuration factor} \]
\[\tau = \text{relaxation time} \]
\[\eta_i = \text{grade efficiency of particle size at mid-point of internal } i \text{ (%)} \]
\[i = \text{subscript donates interval } n \text{ particles size range} \]
\[K_a = a/D \]
\[K_b = b/D \]
\[K_c = \text{cyclone volume constant} \]
\[N_c = \text{gas spins through a number of revolutions } N_c \text{ in the outer vortex} \]
\[v_i = \text{inlet velocity (m/s)} \]
\[v_i = \text{inlet velocity (m/s)} \]
\[\Delta P = \text{cyclone pressure drop (Pa)} \]
\[G_m = \text{Flux of angular momentum (kgm}^2\text{/s}^3\text{)} \]
\[G_s = \text{Flux of linear momentum (kgm/s}^2\text{)} \]
\[p = \text{Pressure (Pa)} \]
\[k = \text{Turbulent kinetic energy (m}^2\text{/s}^2\text{)} \]
\[\text{Re} = \text{Reynolds number} \]
\[\varepsilon = \text{Turbulent dissipation rate (m}^2\text{/s}^3\text{)} \]
\[S = \text{Swirl number} \]
\[U, V, W = \text{Velocity (m/s)} \]
\[u', v', w' = \text{Velocity fluctuation (m/s)} \]
\[t_i = \text{Turbulent intensity} \]

xvii
\(B = \) Body force
\(\mu = \) Molecular viscosity
\(\xi = \) Bulk viscosity
\(H = \) Total enthalpy
\(\lambda = \) Thermal conductivity
\(\Gamma = \) Diffusion coefficient
\(I = \) Unit tensor
\(\Phi = \) Reynold average quantities or Pressure strain correlation
\(P = \) Shear production
\(G = \) Buoyancy stress production tensor
\(\tau_p = \) Particle response time
\(Re_r = \) Relative Reynold number
CHAPTER I

INTRODUCTION

1.0 Air Pollution

Air pollution is defined as the presence in the outdoor atmosphere of one or more contaminants (pollutants) in quantities and the duration that can harm human, plant, or animal life or property (materials) or which unreasonably interferes with the enjoyment of life or the conduction of business. Examples of traditional contaminants include sulfur dioxide, nitrogen oxides, carbon monoxide, hydrocarbons, volatile organic compounds (VOCs), hydrogen sulfide, particulate matters, smokes, and hazes. This list of air pollutants following World War II, and ozone has become a major world wide air pollutant concern.

Malaysia possesses a great potential market for industrial gas cleaning technology. The country has made great strides in economic development during the last two decades. It is endowed with rich natural resources, such as oil and gas which provide the nation’s energy requirements and a feedstock for the development in manufacturing industry. Although Malaysia can be considered as one of the least polluted urban environments in Asia, rapid urbanisation and sustained economic growth have contributed towards air pollution issues. There is a rapid increase of pollutants and waste with the shift in the nation’s strategy from agriculture towards manufacturing and heavy industries which will result in the deterioration of air and water quality. The goal of the country is to achieve the status of industrial country by
the year 2020 and the associated industrial and urban expansion will further strain the environment in Malaysia.

This section is focused on the air pollution issue in Malaysia. The issue of air pollution is particularly critical in urban industrial areas like Klang Valley (Wan Ramli, 1996). The deteriorating state of air quality in this area has been due to the presence of suspended particulates or dusts generated by disposal of industrial, municipal and agricultural waste through open burning. Apart from these, the problem is also worsened by the emission from the power generation plants and by industrial combustion.

Table 1.1 shows some potentially significant air pollution sources published by Department of Environment, (DOE) Malaysia in 1996. The major air pollutants measured under this air quality monitoring programme include suspended particulates, sulphur dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, ozone and lead. The five year statistical data shows the increment for all potentially significant air pollution sources which lead to the emission of large amount of air pollutants.

Table 1.1: Potentially Significant Air Pollution Sources in Malaysia, (DOE, 1996)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Chemical Industries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pesticides and Fertilizer</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>91</td>
<td>80</td>
</tr>
<tr>
<td>- Chemical Manufacturing</td>
<td>192</td>
<td>194</td>
<td>175</td>
<td>98</td>
<td>124</td>
</tr>
<tr>
<td>- Plastic and Resin</td>
<td>90</td>
<td>91</td>
<td>142</td>
<td>54</td>
<td>53</td>
</tr>
<tr>
<td>- Soup and Detergents</td>
<td>9</td>
<td>9</td>
<td>24</td>
<td>69</td>
<td>32</td>
</tr>
</tbody>
</table>
Table 1.1: Potentially Significant Air Pollution Sources in Malaysia, 1996 (DOE, 1996) Cont’d

<table>
<thead>
<tr>
<th>Type of sources</th>
<th>Number of Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Food and Agriculture</td>
<td></td>
</tr>
<tr>
<td>- Palm Oil Mill</td>
<td>260</td>
</tr>
<tr>
<td>- Rubber Mill</td>
<td>211</td>
</tr>
<tr>
<td>- Rubber Product Manufacturing</td>
<td>82</td>
</tr>
<tr>
<td>c. Metal Industries</td>
<td></td>
</tr>
<tr>
<td>- Aluminium Works</td>
<td>19</td>
</tr>
<tr>
<td>- Foundries</td>
<td>277</td>
</tr>
<tr>
<td>- Iron and Steel Mill</td>
<td>24</td>
</tr>
<tr>
<td>- Lead Smelter and Related Works</td>
<td>11</td>
</tr>
<tr>
<td>- Tin Smelting</td>
<td>5</td>
</tr>
<tr>
<td>d. Mineral Products</td>
<td></td>
</tr>
<tr>
<td>- Asbestos Works</td>
<td>5</td>
</tr>
<tr>
<td>- Cement Products</td>
<td>178</td>
</tr>
<tr>
<td>- Glass Works</td>
<td>27</td>
</tr>
<tr>
<td>- Portland Cement Manufacturing</td>
<td>5</td>
</tr>
<tr>
<td>e. Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>- Petroleum Refineries</td>
<td>5</td>
</tr>
<tr>
<td>- Miscellaneous Petroleum Process</td>
<td>28</td>
</tr>
<tr>
<td>- Gas Processing</td>
<td>24</td>
</tr>
<tr>
<td>f. Fuel Combustion Sources</td>
<td></td>
</tr>
<tr>
<td>- Thermal Power Station</td>
<td>14</td>
</tr>
<tr>
<td>- Boiler and Furnaces</td>
<td>2374</td>
</tr>
<tr>
<td>- Incinerator</td>
<td>250</td>
</tr>
</tbody>
</table>

1.1 Particulate Emission

Particulates represent any dispersed matter, solid or liquid, in which the individual aggregates are larger than single small molecules (about 0.0002 μm in diameter) but smaller than about 500 micrometers (μm) (Hesketh, 1996). The origins of the
particles determine their sizes and natures. Hesketh (1996) prove the following useful definitions of natural and man-made mixtures of particles and gases: “Smokes are both liquid and solid particles from oxidation processes, while fumes are specifically smokes condensed from metallic vapours. Dust is a dispersion aerosol of particles naturally generated by wind-ground interactions. Mists are liquid droplet suspension and fog is a condensed mists. Hazes are mists and dusts while smog was originally a contraction indicating the presence of both smoke and fog”. However, in the field of air pollution it is common to use the terms “dust” and “particulate” almost interchangeably to describe almost any fine solid material required to be removed from a gas stream.

Particulate air pollution includes solid and liquid particles directly emitted into the air, such as diesel soot, road and agricultural dust, and particles resulting from manufacturing processes. Particles are also produced through photochemical reactions involving pollution gases, such as sulfur and nitrogen oxides, which are by-product of fuel combustion (Ostro and Chestnut, 1998). The emission of particulate matters increases as the increment of potential air pollution sources (Table 1).

Fang et al. (2003) found out that health related problem was associated with either the total mass concentration of suspended particles or the mass concentration of particles with aerodynamic diameters smaller than 10 μm (PM_{10}). Epidemiological studies conducted in several countries showed consistent associations of exposure to ambient particulates with adverse health effects including increased mortality, hospitalization for respiratory or cardiovascular disease, and respiratory symptoms and decreased lung function. Based on epidemiological time series studies, dose-response functions were identified between an increase in particulate matter and
adverse health effects (El-Fadel and Massoud, 2000). Guo et al. (1999) revealed that PM$_{10}$ was positively associated with the prevalence of asthma in middle-school students in Taiwan.

1.2 Regulation of Particulate Emission

The Department of Environment (DOE) Malaysia has been regulating particulate emission since the 1978 (EQA 1974, 2001) under the regulation 24, 25 and 29 of Environment Quality (Clean Air) Regulations. Standards A and B in Malaysia Clean Air Act are only enforced to the existing facilities while, Standard C is a requirement for new and future facilities. Any plant or facilities that are built after this regulation is considered as new facilities and need to comply with Standard C in Environment Quality (Clean Air) (Amendment) Regulations 2001 in Table 1.2. The regulation is divided into three main parts, Solid particles concentration in heating of metals, Portland cement plant and Solid particles concentration in other operations. The measurement of dust, soot, ash, grit and any solid particles concentration must be done before admixture with air, smokes, or other gases.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Solid particles concentration in heating of metals (g/m3)</th>
<th>Solid particles concentration in other operations (g/m3)</th>
<th>Portland cement plant (g/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 1.2: Environment Quality (Clean Air) (EQA 1974, 2001)