UNIVERSITI PUTRA MALAYSIA

ESTABLISHMENT OF HAEMORRHAGIC SEPTICAEMIA IN MICE INOCULATED WITH WATER CONTAMINATED WITH PASTEURELLA MULTOCIDA TYPE B:2

MOHAMMED MUQDAD KHALEEL

FPV 2014 16
ESTABLISHMENT OF HAEMORRHAGIC SEPTICAEMIA IN MICE INOCULATED WITH WATER CONTAMINATED WITH PASTEURELLA MULTOCIDA TYPE B:2

By

MOHAMMED MUQDAD KHALEEL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Veterinary Science

March, 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial use of material may only be made with the expression, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
Fulfillment of the requirement for the degree of Master of Veterinary Science

ESTABLISHMENT OF HAEMORRHAGIC SEPTICAEMIA IN MICE USING
WATER CONTAMINATED WITH PASTEURELLA MULTOCIDA TYPE B: 2

By

MOHAMMED MUQDAD KHALEEL

March, 2014

Chairman: Faez Firdaus Jesse Abdullah, Ph.D.
Faculty: Veterinary Medicine

Haemorrhagic septicaemia (HS) is an infectious disease of cattle and buffalo inflicted by
serotypes B: 2 and E: 2 of Pasteurella multocida in Asian and African countries
respectively and characterised by an acute, highly fatal septicaemia with high morbidity
and mortality. Therefore, the present study aims at evaluating the presence of P.
multocida type B: 2 in various organs using Polymerase chain reaction (PCR), and host
cell response in mice infected with Pasteurella multocida type B: 2 in contaminated river
water with mice carcasses kept for 24, 48 and 72 hours. This study postulated that the
outbreak of HS among buffaloes and cattle could be due to the consumption of river
water contaminated with infected HS carcasses and the aerosol routes could perhaps be a
readily available route for effective vaccine administration and heightened immunity in
animals considering the progressive responses of APPs through this route. Sixty five
healthy BALC male mice of eight to ten weeks old were used in this study. The wild-type
P. multocida B: 2 used in this study were obtained from stock culture. The river water
was obtained from Hulu Langat and was cultured to confirm that it was free from P.
multocida type B: 2. Fifteen mice were initially inoculated with 1.0 mL of P. multocida
type B: 2 intraperitoneally. Five infected mice carcasses were placed in each tank for 24,
48 and 72 hours and 1ml of the contaminated river water containing Pasteurella multocida
type B: 2 were inoculated via the intraperitoneally and aerosol routes while, 0.4 ml of
Pasteurella multocida type B: 2 was inoculated orally into five mice in each group and
after 48 hours the mice were euthanized by cervical dislocation. Blood samples were
collected directly from the heart into plain tubes from the moribund animals to obtain
serum for the analysis of serum amyloid A (SAA) and haptoglobin. The fourth group is
the control group comprised of five mice and was inoculated with 1.0 mL of sterile
Phosphate Buffered Saline (PBS) pH7. Post mortem was conducted and the brain, kidney,
heart, spleen, lungs and liver were sampled for histopathology. All the organs were
cultured on the blood agar and incubated at 37°C for 24 hours. PCR was performed on the
organs from the mice. The concentration of SAA increased significantly (p<0.05) in the
mice that were infected with the contaminated river water for 72 hours followed
intraperitoneal group compared to the control, oral and aerosol group. There were
also significant increase (p<0.05) in the concentrations of Hp in the group of mice that
were infected with contaminated river water for 24 hours intraperitoneally relative to
the control, oral and the aerosol groups. The PCR results revealed the presence of P.
multocida from the brain, kidney, heart, spleen, lung and liver in the group of mice from the intraperitoneal, oral and aerosol groups. The river water kept for 24 hours was positive for *P. multocida* in the intraperitoneal, oral and the aerosol groups. The river water kept for 48 and 72 hours were positive for *P. multocida* in the intraperitoneal and oral groups. The cellular changes in the vital organs include thrombosis, inflammatory cells, hemorrhage, degeneration and necrosis. In the brain, heart, kidney, liver, lung and spleen, the degeneration and necrosis was significantly high (p < 0.05) compared to the other cellular changes in the mice carcasses infected with *P. multocida* in contaminated river water kept for 72 hours. In conclusion, mice model could be used to enhance the understanding of the progression of the disease and control of the natural disease through the various routes of the disease transmission and contaminated river water infected with HS carcasses could be a potential source of infection if the carcasses are not removed from the river water immediately.
Hawar berdarah merupakan penyakit berjangkit bagi lembu dan kerbau disebabkan oleh bakteria *Pasteurella multocida* jenis serotaip B:2 dan E:2 dinegara Asia dan Afrika masing-masing dan penyakit ini mempunyai ciri-ciri akut, septisemia berbahaya, dengan morbiditi dan kematian yang tinggi. Oleh itu, kajian ini bertujuan untuk melihat kehadiran bakteria *P. multocida* B: 2 dalam pelbagai organ dengan menggunakan aplikasi reaksi rantai polymerase (PCR), dan tindak balas sel tuan rumah dalam mencit yang dijangkiti dengan bakteria *Pasteurella multocida* B: 2 dalam air sungai yang tercemar dengan bangkai mencit disimpan selama 24, 48 dan 72 jam. Kajian ini merumuskan bahawa wabak hawar berdarah dikalangan kerbau dan lembu mungkin disebabkan oleh penggunaan air sungai tercemar dengan jangkitan bangkai hawar berdarah dan laluan aerosol boleh menjadi salah satu laluan sedia ada untuk pentadbiran vaksin yang berkesan dan imuniti yang memuncak pada haiwan. Enam puluh lima ekor mencit jantan BALC yang sihat berumur antara lapan hingga sepuluh minggu digunakan dalam kajian ini. Bakteria jenis liar *P. multocida* B: 2 yang digunakan dalam kajian ini diperolehi dari stok kultur. Air sungai yang digunakan dalam kajian ini diperolehi dari Hulu Langat dan dikultur untuk mengesahkan bahawa ia adalah bebas daripada bakteria *P. multocida* jenis B: 2. Lima belas ekor mencit pada mulanya disuntik dengan 1.0 mL *P. multocida* Jenis B: 2 melalui intraperitoneum. Lima bangkai mencit yang dijangkiti dengan telah hawar berdarah diletakkan di dalam setiap tangki air sungai selama 24, 48 dan 72 jam dan 1 mL air sungai yang dicemari dengan *Pasteurella multocida* jenis B: 2 telah disuntik melalui intraperitoneum dan laluan aerosol manakala, 0.4 mL air sungai tercemar telah disuntik secara lisan kepada lima ekor mencit dalam setiap kumpulan, dan selepas 48 jam kesemua mencit telah ditakai dengan cara terkehel leher. Sampel darah yang diambil secara langsung daripada jantang ke dalam tiub kosong daripada mencit yang menunjukkan tanda hampir menemui ajal bagi mendapatkan serum untuk analisis serum amiloid A (SAA) dan haptoglobin. Kumpulan keempat adalah kumpulan kawalan terdiri daripada lima ekor mencit yang telah disuntik dengan 1.0 mL steril larutan penampak fosfat (PBS) pH7. Bedah siasat telah dijalankan dan organ seperti otak, buah pinggang, jantung, limpa, paru-paru dan hati telah disampel untuk tujuan kajian histopatologi. Semua organ-organ telah dikultur pada agar darah dan dieram pada 37°C selama 24 jam. PCR telah dijalankan ke atas organ-organ tersebut. Kepekanan SAA meningkat dengan ketara (p < 0.05) pada mencit yang dijangkiti dengan air sungai yang tercemar selama 72 jam diikuti kumpulan ‘intraperitoneal’ berbanding dengan kawalan, kumpulan lisan dan ‘aerosol’. Terdapat juga peningkatan yang signifikan (p < 0.05) dalam kepekanan Hp
dalam kumpulan mencit yang dijangkiti dengan air sungai yang tercemar selama 24 jam ‘intraperitoneally’ berbanding dengan kawalan, lisan dan kumpulan aerosol. Keputusan PCR mendedahkan kehadiran *P. multocida* pada organ seperti, buah pinggang, jantung, limpa, paru-paru dan hati pada mencit dari kumpulan intraperitoneal, lisan dan aerosol. Air sungai yang disimpan selama 24 jam adalah positif bagi *P. multocida* bagi kumpulan ‘intraperitoneal’, lisan dan aerosol. Air sungai disimpan selama 48 dan 72 jam adalah positif bagi *P. multocida* bagi kumpulan ‘intraperitoneal’ dan lisan. Perubahan struktur sel dalam organ-organ adalah seperti trombosis, sel-sel radang, pendarahan, degenerasi dan nekrosis. Bagi organ otak, jantung, buah pinggang, hati, paru-paru dan limpa, kemerosotan dan nekrosis adalah ketara tinggi (p < 0.05) berbanding dengan perubahan sel lain dalam kumpulan yang bangkai mencit dijangkiti *P. multocida* dalam air sungai yang tercemar disimpan selama 72 jam. Kesimpulannya, model mencit boleh digunakan untuk meningkatkan pemahaman perkembangan penyakit dan kawalan penyakit semula jadi melalui pelbagai laluan jangkitan penyakit dan air sungai yang tercemar dijangkiti bangkai hawar berdarah boleh menjadi salah satu sumber yang berpotensi jangkitan wabak penyakit hawar berdarah jika bangkai tersebut tidak dikeluarkan dari air sungai serta-merta.
ACKNOWLEDGEMENTS

In the name of ALLAH, the Most Merciful and the Most Beneficent. All praises be to ALLAH, the Lord of the Universe. Only by His grace and with His mercy that this thesis was completed.

My profound and heartfelt gratitude and appreciation goes to my supervisor, Dr. Faez Firdaus Jesse Abdullah who was behind the success of this thesis. He is a father and mentor to me. His principles and objectives way of looking at things are praiseworthy, as well the openness of his kind heart to all his students. He never carries himself as a supervisor, rather as a friend, parent and colleague. He listens and gives very honest criticisms without prejudice or emotion and I have never regretted spending a minute with him. May ALLAH (SWT) grant you and your family paradise on the last day and perpetual and prosperous health in this world. My utmost gratitude also goes to my golden supervisory committee members Professor Dr. Mohd Zamri Saad, Abdul Wahid Haron and Dr. Abdulrahman Omar. Your support, assistance and guidance were valuable input throughout my study. May ALLAH uplift you in splendid health in this world and reward you Aljanna Firdaus in the next world.

Special thanks are extended to all the staff of Veterinary Teaching Hospital (UVH) and the Hematology Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM) and Veterinary Teaching Hospital, namely, Mr. Mohammed Jefri Pn. Latifa. Continuous moral support and encouragement from my Mother, wife, and brother during my study are deeply appreciated.

No dream can be realized without the unwavering support of a loving and devoted family comprising of Rana Abdullah, Faeza Shuker, Muqdad Kaleel, Mustafa, Thank you for your patience and uncountable sacrifices you made for me. I pray to Allah to bless you all and make us the best of family of the Ummah in this generation and after. My most splendid and heartfelt gratitude goes to the following golden people in my entire life for struggling to see that I excel in my life against all existing huddles.

Specially dedicated to my beloved Mother Faeza Shuker, my beloved Father Muqdad Khaleel my beloved wife Rana Abdullah and my children in giving moral supports and loved that helped me countless time to overcome each and every obstacles. Thank you to those people who have guided and inspired me throughout my journey of education.
I certify that a Thesis Examination Committee has met on 15th March, 2014 to conduct the final examination of Mohammed Muqdad Khaleel on his thesis entitled “establishment of haemorrhagic septicaemia in mice inoculated with water contaminated with \textit{Pasteurella multocida} type B:2” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Veterinary Science.

Members of the Thesis Examination Committee were as follows:

Abdul Rani Bahaman, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairperson)

Abdul Aziz Saharee, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Hassan Mohd Daud, PhD
Assoc. Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

David Eckersall, PhD
Professor
Institute of Biodiversity Animal Health and Comparative Medicine
University of Glasgow
United Kingdom
(External Examiner)

\[\text{signature}\]
NORITAH OMAR, PhD
Assoc. Prof. and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14/3/2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Veterinary Science.

The members of the Supervisory Committee were as follows:

Faez Firdaus Jesse Abdullah, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairperson)

Mohd Zamri Saad, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Abd Wahid Haron, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Abdul Rahman Omar, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the
• Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published in book form;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ______________

Name and Matric No: ________________________________
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Member of
Supervisory Supervisory Committee: ___________________________
Committee: ___________________________

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Member of
Supervisory Supervisory Committee: ___________________________
Committee: ___________________________
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>TABLE OF CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Haemorrhagic septicaemia (HS)
2.2 Pathogenesis
2.3 Diagnosis
2.4 Acute Phase Proteins
2.5 Pathology

3 MATERIALS AND METHODS

3.1 Mice
3.2 River water
3.3 Inoculum
3.3.1 Experimental design in mouse model
3.3.2 Histopathology
3.3.3 Clinical signs scoring
3.3.4 Lesions scoring
3.4 Acute Phase Proteins (APP) analysis
3.4.1 Determination of Mouse Haptoglobin(HP)
3.4.2 Determination of Mouse Serum Amyloid A (SAA)
3.5 Sampling and culture
3.5.1 DNA extraction
3.5.2 PCR condition
3.5.3 Primer design
3.5.4 Agarose gel preparation
3.5.5 Electrophoresis

4 ACUTE PHASE PROTEIN RESPONSES IN MICE INFECTED WITH RIVER WATER CONTAMINATED BY PASTEURELLA MULTOCIDA TYPE B:2

4.1 Introduction
4.2 Material and methods
4.3 Results
4.4 Discussion
POLYMERASE CHAIN REACTION DETECTION OF *PASTEURELLA MULTOCIDA* TYPE B:2 IN MICE INFECTED WITH CONTAMINATED RIVER WATER

5.1 Introduction 20
5.2 Material and methods 20
5.3 Results 21
5.4 Discussion and conclusion 28

PATHOLOGICAL CHANGES IN MICE INFECTED WITH RIVER WATER CONTAMINATED BY *PASTEURELLA MULTOCIDA* TYPE B:2

6.1 Introduction 29
6.2 Materials and methods 29
6.3 Results 30
6.4 Discussion 40

GENERAL DISCUSSION AND CONCLUSION

7.1 General discussion and conclusion 44

REFERENCES 49
BIODATA OF STUDENT 50
LIST OF PUBLICATIONS 51
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The microscopic lesions scored for the organs examined</td>
</tr>
<tr>
<td>5.1</td>
<td>Identification of P. multocida type B:2 in vital organs inoculated via different routes with river water contaminated with infected mice carcasses kept for 24 hours by using PCR</td>
</tr>
<tr>
<td>5.2</td>
<td>Identification of P. multocida type B:2 in vital organs inoculated via different routes with river water contaminated with infected mice carcasses kept for 48 hours by using PCR</td>
</tr>
<tr>
<td>5.3</td>
<td>Identification of P. multocida type B:2 in vital organs inoculated via different routes with river water contaminated with infected mice carcasses kept for 72 hours by using PCR.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Flowchart of experimental design in mice model</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Picture of normal mice (left) and ruffled fur mice (right)</td>
<td>12</td>
</tr>
<tr>
<td>4.1</td>
<td>Responses of SAA in mice post inoculation with river water contaminated with infected mice carcasses for 24, 48 and 72 hour through the different routes of inoculation.</td>
<td>17</td>
</tr>
<tr>
<td>4.2</td>
<td>Responses of Hp in mice post inoculation with river water contaminated with infected mice carcasses for 24, 48 and 72 hour through the different routes of inoculation.</td>
<td>17</td>
</tr>
<tr>
<td>5.1</td>
<td>PCR identification of P. multocida type B: 2 in organs inoculated through different routes with river water contaminated with infected mice carcasses kept for 24 hours.</td>
<td>23</td>
</tr>
<tr>
<td>5.2</td>
<td>PCR identification of P. multocida type B: 2 in organs inoculated through different routes with river water contaminated with infected mice carcasses kept for 48 hours.</td>
<td>25</td>
</tr>
<tr>
<td>5.3</td>
<td>PCR identification of P. multocida type B: 2 in organs inoculated through different routes with river water contaminated with infected mice carcasses kept for 72 hours.</td>
<td>27</td>
</tr>
<tr>
<td>6.1</td>
<td>Section of the heart showing severe congestion, degeneration and necrosis of cardiocytes, from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>31</td>
</tr>
<tr>
<td>6.2</td>
<td>Section of the kidney showing severe congestion, tubular degeneration and necrosis, from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>31</td>
</tr>
<tr>
<td>6.3</td>
<td>Section of the lung showing severe congestion, thickening of the interalveolar septae with cellular infiltration, from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>32</td>
</tr>
<tr>
<td>6.4</td>
<td>Section of the lung showing congestion and mild pulmonary oedema from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>32</td>
</tr>
<tr>
<td>6.5</td>
<td>Section of the spleen showing severe congestion and necrotic follicles in the white pulp from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>33</td>
</tr>
<tr>
<td>6.6</td>
<td>Section of the liver 72hrs showing congestion of the central vein, degeneration and necrosis of hepatocytes from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>33</td>
</tr>
<tr>
<td>6.7</td>
<td>Section of the liver showing congestion of the sinusoids and cellular infiltration from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>34</td>
</tr>
<tr>
<td>6.8</td>
<td>Section of the liver showing congestion in the sinusoids, degeneration and necrosis of hepatocytes with leucocytic infiltration from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>34</td>
</tr>
<tr>
<td>6.9</td>
<td>Section of the brain showing capillary congestion, neuronal degeneration and necrosis from mice inoculated intraperitoneally with contaminated river water kept for 72 hours.</td>
<td>35</td>
</tr>
</tbody>
</table>
6.10 Bar graph showing distribution of pathological lesions in organs of mice inoculated with water contaminated with infected mice carcass for 24 hours via aerosol, intraperitoneal and oral routes. 36

6.11 Bar graph showing distribution of pathological lesions in organs of mice inoculated with water contaminated with infected mice carcass for 48 hours via aerosol, intraperitoneal and oral routes. 37

6.12 Bar graph showing distribution of pathological lesions in organs of mice inoculated with water contaminated with infected mice carcass for 72 hours via aerosol, intraperitoneal and oral routes. 38
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>Acute phase proteins</td>
</tr>
<tr>
<td>APR</td>
<td>Acute phase reaction</td>
</tr>
<tr>
<td>AGID</td>
<td>Agar gel immunodiffusion</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain Heart Infusion</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>Hp</td>
<td>Haptoglobin</td>
</tr>
<tr>
<td>HS</td>
<td>Haemorrhagic septicaemia</td>
</tr>
<tr>
<td>ICR</td>
<td>Institute of Cancer Research</td>
</tr>
<tr>
<td>IU</td>
<td>International unit</td>
</tr>
<tr>
<td>IHA</td>
<td>Indirect haemagglutination</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>NC</td>
<td>Necrotic cardiocytes</td>
</tr>
<tr>
<td>OIE</td>
<td>Office of International Epizootic</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>SAA</td>
<td>Serum amyloid A</td>
</tr>
<tr>
<td>TSI</td>
<td>Triple Sugar Iron</td>
</tr>
<tr>
<td>VRI</td>
<td>Veterinary Research Institute</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

The production of ruminants in Malaysia is steadily changing from subsistence to intensive operations (Jesse et al., 2013a). The ruminants’ population is predominantly made up of cattle, buffaloes, goats and sheep. The ruminant industry is the foremost in the production of food such as milk, meat and the by-products such as hide for the leather industry in Malaysia. The ruminant sector is vulnerable to the deadly and infectious disease outbreaks, which causes enormous losses to farmers and the country. The acute deadly disease is known as haemorrhagic septicaemia (HS) caused by a Gram negative bacterium called Pasteurella multocida type B: 2.

The pathogen is significant in animals for a protracted period and emerging as human pathogen (Jesse et al., 2013a) leading to a disease process termed Pasteurellosis. Notwithstanding, Pasteurellae have been indicated as the most dominant microflora of the upper respiratory tract in healthy animals (Abubakar et al., 2012; Jesse et al., 2013b). The organisms usually act as secondary invaders in animals with concomitant diseases or suffering from incapacitating stressful conditions (Abubakar and Zamri, 2011; Jesse et al., 2013c) and the infection frequently occurs via inhalation or ingestion of infected material (Shafarin et al., 2009).

In one study, research was conducted to investigate on the survival rate of Pasteurella multocida in water using different temperature where 18°C provides better survival rate then 2°C (Bredy and Botzler, 1989). Depending on the mode of storage and temperature where Pasteurella multocida was not isolated in river water and artificial sea water from the first to the 14th day of inoculation (Thomson et al., 1992).

Animals experienced exogenous or endogenous challenge mount a strong response by activating the innate immune systems at the initial stage of acute infection before the onset of the acquired immune system (Eckersall, 2000). The acquired immune system ultimately leads to the development of specific cellular and humoral immune responses. During the preliminary challenge the continued existence of the host depends on the capability of the innate reactions to tussle the causes of disease (Eckersall, 2000).

The acute phase proteins (APPs) are proteins found in the blood and the circulating concentrations of APPs are correlated to the severity of the infection and hence the concentrations of APPs offers a ready means of assessing the presence and extent of the disease progression (Kent, 1992; Eckersall, 2000; Murata et al., 2004; Petersen et al., 2004; Cérón et al., 2005; Baumann and Gauldie, 1994; Tothova, et al., 2013).

However, there are substantial species dissimilarities in the serum concentrations of acute phase proteins (Eckersall and Bell, 2010). Six fold increases in Hp concentrations was observed in infected dairy cows and those with metabolic disease compared to animals with minor lesions (Hirvonen et al., 1999). Seven and forty fold increases in SAA and Hp were also observed in culled dairy cattle with acute lesions relative to healthy beef animals (Tourlomoussis et al., 2004). Isolation of Pasteurella multocida from calves with respiratory disease was associated with significant increased concentrations of acute phase proteins (Nikunen et al., 2007; Hodgson et al., 2005).
Jesse et al. (2013c) successfully isolated *Pasteurella multocida* type B: 2 in mice following oral inoculation using polymerase chain reaction. The infection of mice with contaminated river water with *P. multocida* type B: 2 and subsequent alterations of SAA and Hp in a mice model has not been elaborated in previous studies. There is still inadequate information about the pathogenicity and epidemiology of HS through the intraperitoneal, oral and aerosol routes with contaminated river water with *P. multocida* type B:2 mice carcasses kept for 24, 48 and 72 hours. This study is a leap in the knowledge of HS transmission in a mice model. This study also postulated that the outbreak of HS among buffaloes and cattle could be due to the consumption of river water contaminated with infected HS carcasses and the aerosol routes could perhaps be a readily available route for effective vaccine administration and heightened immunity in animals considering the progressive responses of APPs through this route. Therefore, the present study aims at evaluating the presence of *P. multocida* type B: 2 in various organs using Polymerase chain reaction (PCR), and host cell response in mice infected with *Pasteurella multocida* type B: 2 in contaminated river water with mice carcasses kept for 24, 48 and 72 hours.

Therefore, the objectives of present study are as follows:

1. To detect the presence of *P. multocida* type B: 2 in various organs using Polymerase chain reaction (PCR) in mice through different routes of inoculation with river water contaminated with the bacteria.

2. To determine acute phase protein response associated with *Pasteurella multocida* type B: 2 infections in mice through different routes with river water contaminated with *Pasteurella multocida* type B: 2.

3. To determine the severity of cellular changes in various organs associated with *Pasteurella multocida* type B: 2 infections in mice through different routes with contaminated river water with *Pasteurella multocida* type B: 2.

Therefore the hypotheses of study were as outlined below:

1. Infection of mice with contaminated river water via different routes of inoculation will lead to the establishment of HS in mice and will be associated with clinical responses.

2. Contaminated river water with *P. multocida* type B: 2 inoculations through different routes can be detected in the various organs using Polymerase chain reaction (PCR).

3. Inoculation of mice through different routes with contaminated river water containing *Pasteurella multocida* type B: 2 will lead to changes in the concentrations of acute phase proteins.

4. There will be severe cellular changes in the various organs associated with the infection of *Pasteurella multocida* type B: 2 in mice inoculated through different routes with contaminated river water.

Therefore, the present study will provide a better comprehension of the characteristics of *Pasteurella multocida* type B: 2 infection and pathogenesis in the host post inoculation with contaminated river water.
REFERENCES

48

