INFLUENCE OF DIETARY POLYUNSATURATED FATTY ACIDS ON GLUCOSE SENSITIVITY, INSULIN RESISTANCE AND COGNITIVE FUNCTION IN A RAT MODEL

TAN AI LI

FPV 2014 25
INFLUENCE OF DIETARY POLYUNSATURATED FATTY ACIDS ON GLUCOSE SENSITIVITY, INSULIN RESISTANCE AND COGNITIVE FUNCTION IN A RAT MODEL

By

TAN AI LI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

July 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright©Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

INFLUENCE OF DIETARY POLYUNSATURATED FATTY ACIDS ON GLUCOSE SENSITIVITY, INSULIN RESISTANCE AND COGNITIVE FUNCTION IN A RAT MODEL

By

TAN AI LI

July 2014

Chairman : Goh Yong Meng, PhD.
Faculty : Veterinary Medicine

Insulin resistance (IR) occurs when there is an impaired response to insulin-dependent glucose regulation in the body. Hallmarks for insulin resistance include persistent hyperinsulinaemia and hyperglycaemia. In this present study, we are able to understand how insulin resistance occur in the molecular pathway because most studies are focusing on factors that cause insulin resistance such as diet and exercise rather than more in depth work. The objectives of this study were to investigate the changes in insulin sensitivity, body fat accretion and circulating leptin level in the body due to different ratio of n-6 and n-3 polyunsaturated fatty acids (PUFAs) supplementation. The histological changes in the liver will also be determined. The roles and expression levels of the relevant genes involved in fat metabolism such as peroxisome proliferator-activated receptor, (PPAR), selected adipokines and glucose transporters were examined in the rat model. At the end of the study, the rats were also examined to determine if there is any plausible link between cognitive ability, insulin resistance and dietary fatty acid supplementation in the test subjects.

Male Sprague Dawley rats were used in this feeding trial which lasted more than 24 weeks. The animals were fed either a diet fortified with additional 10% of fat made up primarily of either n-3 PUFA from Menhaden oil (MCD), n-6 PUFA from soybean oil (SCD), saturated butter fat (BCD) or an unsupplemented base diet (CD). Plasma insulin, glucose and the relevant adipokine levels were monitored at week 0, 10 and 22 of the experiment to determine the onset of insulin resistance. Liver histology examination was performed to determine the possible pathologies associated with long-term fat supplementation. Muscle and liver tissue samples were also sampled to determine the level of PPAR, tumor necrosis factor (TNF)-α, glucose transporter (GLUT) 1 and GLUT4 gene expressions. The expression of the glucose transporter
and selected biomarkers of insulin resistance was evaluated by real-time reverse transcription polymerase chain reaction method. The study was capped with cognitive ability evaluation of the rats using the Morris Water Maze.

Results indicated that high n-3 PUFA supplementation in MCD rats delayed the onset of IR. MCD rats also had lower fat mass and fat percentage in the body, and moderate levels of leptin compared to other groups. This was due to the positive correlation between fat mass and leptin secretion. In BCD rats, they exhibited insulin resistance characteristic with high glucose and insulin level. This was due to the high saturated fat accumulation in their body. Other than that, PPARα and PPARγ genes were lowly expressed, as well as negligible levels of GLUT4 and GLUT1 readings in the liver and muscle cells. However, TNF-α gene expression were significantly higher in the insulin resistant BCD group, but much lower among the MCD and SCD groups. In addition the, the liver section of the BCD group showed lipid vacuolation in and between the hepatocytes. This will lead to the pathogenesis of liver pathology.

The profound effects of dietary fatty acids on the functions of the central nervous system during cognition, memory and learning ability was evident in this study. Animals that were supplemented with saturated fats which were insulin resistant at this stage fared poorly in the Morris Water Maze Test. Contrastingly, non-insulin resistant animals from the MCD group fed with n-3 PUFA and normal animals from the CD group performed significantly better. In conclusion, this study demonstrated that high n-3 PUFA dietary fats delayed the onset of insulin resistance and reduces body fat accretion. Furthermore, it also highlights the high expression of PPARα, PPARγ, GLUT1 and GLUT4 genes while reducing the pro-inflammatory gene (TNF-α). High n-3 PUFA also exerts protective effect in the brain to enhance spatial learning and cognitive performance.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENGARUH PEMAKANAN ASID LEMAK POLITAKTEPU TERHADAP KEPEKAAN GLUKOSA, KERINTANGAN INSULIN DAN FUNGSI KOGNITIF PADA MODEL TIKUS

Oleh

TAN AI LI

Julai 2014

Pengerusi : Goh Yong Meng, PhD.
Faculti : Perubatan Veterinar

Kerintangan insulin (IR) berlaku apabila terdapat kepincangan gerak balas terhadap proses pengawalaturan glukosa yang dikawal selia oleh insulin. Ciri-ciri kerintangan insulin adalah hiperinsulinemia dan hiperglisemia. Kerintangan insulin kerap berlaku beberapa tahun sebelum kemunculan Diabetes Mellitus Jenis II (T2DM). Di dalam kajian ini, kita dapat memahami bagaimana kerintangan insulin berlaku pada tahap molekular kerana kebanyakan kajian sebelum ini hanya memberi tumpuan kepada faktor-faktor yang menyebabkan kerintangan insulin seperti menerusi diet dan senaman. Objektif kajian ini ialah untuk memerhatikan perubahan pada insulin sensitivi, pengumpulan lemak badan dan tahap pengedaran leptin di dalam badan disebabkan oleh perbezaan nisbah n-6 dan n-3 asid lemak poli tak tepu. Perubahan histologi di hati juga akan ditentukan. Peranan dan tahap ekspresi gen yang terlibat dalam metabolisme lemak seperti peroksisom proliferator-diaktifkan penerima (PPAR), adipokin yang dipilih dan pengangkutan glukosa diperiksa dalam model tikus. Pada akhir kajian, tikus juga telah diperiksa untuk menentukan sama ada terdapat hubungan yang munasabah antara keupayaan kognitif, rintangan insulin dan akibat suplementasi asid lemak dalam tikus kajian.

Tikus Sprague Dawley jantan telah digunakan dalam eksperimen pemakanan ini yang telah mengambil masa 24 minggu. Tikus diberi makan diet yang ditambah dengan 10 % lemak tambahan yang terdiri sama ada daripada lemak yang majoritinya asid lemak n-3 dari minyak Menhaden (kumpulan MCD), asid lemak n-6 dari minyak kacang soya (kumpulan SCD), asid lemak tepu dari mentega (kumpulan BCD), dan kumpulan kawalan (CD) yang tidak ditambah lemak tambahan. Tahap insulin, glukosa, dan adipokin terpilih dalam plasma telah diukur dalam minggu 0, 10 dan 22 untuk menentukan kemunculan fenomena kerintangan insulin. Kajian histology hati telah dibuat untuk menentukan perubahan patologi pada hati akibat suplementasi lemak yang berterusan. Tisu otot dan hati turut diambil untuk
mengukur tahap ekspresi gen PPAR, TNFα, GLUT1 dan GLUT4. Ekspresi pengangkut glukosa dan penanda-bio untuk kerintangan insulin telah diukur menggunakan teknik RT-PCR. Keupayaan kognitif pada tikus ini turut dinilai menggunakan teknik pagar sesat Morris.

Keputusan menunjukkan bahawa suplementasi n-3 PUFA yang tinggi pada tikus MCD melambatkan permulaan IR. Tikus MCD juga mempunyai pengumpulan lemak dan peratusan lemak yang lebih rendah dalam badan, dan tahap leptin juga sederhana berbanding dengan kumpulan lain. Ini disebabkan oleh korelasi positif antara jumlah lemak badan dan rembesan leptin. Pada tikus BCD, mereka menunjukkan ciri-ciri rintangan insulin seperti tahap glukosa dan insulin yang tinggi. Ini disebabkan oleh pengumpulan lemak tepu yang tinggi di dalam badan mereka. Selain daripada itu, expresi gen PPARα dan PPARγ berada pada tahap yang rendah, manakala tahap expresi GLUT4 dan GLUT1 pula berada pada tahap yang boleh diabaikan. Tetapi, expresi gen TNF-α adalah lebih tinggi pada kumpulan BCD manakala kimpulan MCD dan SCD jauh lebih rendah. Selain itu, histologi hati kumpulan BCD menunjukkan vakoulasi lipid dalam dan di antara hepatosit. Ini akan membawa kepada patogenesis patologi hati. Kes menemukan asid lemak terhadap fungsi sistem saraf pusat dalam kognisi, ingatan dan pembelajaran adalah terbukti dalam kajian ini. Haiwan yang disuplementasi dengan lemak tepu yang mempunyai kerintangan insulin akan mempunyai performasi yang lebih lemah. Manakala, haiwan yang tidak mempunyai kerintangan insulin dari kumpulan MCD yang disuplementasi dengan n-3 PUFA dan haiwan biasa dari kumpulan CD mempunyai performasi jauh lebih baik. Kesimpulannya, kajian ini menunjukkan bahawa suplementsai n-3 PUFA yang tinggi akan melambatkan permulaan kerintangan insulin dan mengurangkan pertambahan lemak badan. Tambahan pula, ia juga menyebabkan expresi gen PPARα, PPARγ, GLUT1 dan GLUT4 yang tinggi. Di samping itu, mengurangkan expresi gen pro-radang (TNF-α). Suplementsai n-3 PUFA yang tinggi juga memberikan kesan perlindungan kepada otak untuk mempertingkatkan pembelajaran dan prestasi kognitif.
ACKNOWLEDGEMENTS

I would like to express my deepest and humble gratitude to my supervisor, Assoc. Prof. Dr. Goh Yong Meng, for his advice, guidance, kindness, patience, motivation, knowledge and encouragement throughout my research and during my preparation of thesis. I feel really indebted to him for consenting to be my supervisor. I would also express my gratitude to my supervisory committee members, Assoc. Prof. Dr. Sharmili Vidyadaran and Dr. Awis Qurni Sazili for all their support and encouragement.

Besides that, I would like to extend my sincere gratitude to Dr. Tan Sheau Wei of Institute of Bioscience and Dr. Abdoreza Soliemani Farjam of Institute of Tropical Agriculture for their guidance and constructive advice. My sincere appreciation to my fellow graduate students Dr. Mahdi Ebrahimi, Dr. Toktam Hajjar, Dr. Suriya Kumari a/p Ramiah and Dr. Joshua Olubodun that helped me and gave me endless support throughout my research. I will cherish this friendship that we have. I’ll like to thank the staffs Mr. Kufli Che Nor, Mrs. Zainab Nasri and Mrs. Rosmawati Hanipah for their technical assistance.

Finally, I would like to thank my husband, Dr. Ong Ghim Hock, family and friends for their love and endless moral support. Thank you for giving me everything and make countless sacrifice to enable me to arrive at what I am today.
I certify that a Thesis Examination Committee has met on 1 July 2014 to conduct the final examination of Tan Ai Li on her thesis entitled "Influence of Dietary Polyunsaturated Fatty Acids on Glucose Sensitivity, Insulin Resistance and Cognitive Function in a Rat Model" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohamed Ali bin Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Rasedee @ Mat bin Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Markandeya Jois, PhD
Senior Lecturer
La Trobe University
Australia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 September 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Sharmili Vidyadaran, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Awis Qurni Sazili, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed r in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/ fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: _______________

Name and Matric No.: __
Declaration by Members of Supervisory committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: __________________________ Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________
Member of Supervisory Committee: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

2.1 Insulin Resistance (IR)

2.1.1 Association of metabolic syndrome and insulin resistance

2.1.2 Medical conditions connected to insulin resistance

2.1.3 Factors causing insulin resistance

2.1.4 Association of glucose metabolism and insulin resistance

2.1.5 Dietary effects on insulin resistance

2.2 Insulin

2.3 Fatty acids

2.4 Fatty acids effecting body composition, glucose and lipid profile

2.5 Adipose tissue and adipokines

2.5.1 Relationship of adipose tissue and fatty acid metabolism

2.5.2 Relationship of adipose tissue and glucose metabolism

2.6 Adipokines

2.6.1 Leptin

2.6.2 Inter-relationship between leptin and insulin

2.6.3 Peroxisome proliferator-activated receptors

2.6.4 TNF alpha

2.7 Glucose transport and glucose transporters

2.8 Cognition

2.8.1 The role of insulin in brain cognition

2.8.2 Relationship of insulin resistance and cognition

2.8.3 Roles of PUFA in cognition
3 THE EFFECT OF POLYUNSATURATED FATTY ACID ON THE ONSET OF INSULIN RESISTANCE

3.1 Introduction 21
3.2 Materials and methods 22
3.2.1 Experimental design 22
3.2.2 Experimental animals and housing 22
3.2.3 Preparation of experimental diets 22
3.2.4 Sample collection 22
3.2.5 Fatty acid profiling for treatment oils, diet and plasma 23
3.2.6 Body composition determination 25
3.2.7 Adipocyte cellularity 26
3.2.8 Plasma leptin measurement 29
3.2.9 Measurement of insulin sensitivity 29
3.2.10 Histological examination of the rat liver 31
3.2.11 Data analysis 31
3.3 Results 32
3.4 Discussion 54
3.5 Conclusions 61

4 EFFECT OF DIETARY FATTY ACID SUPPLEMENTATION ON GENE EXPRESSION IN NORMAL AND INSULIN RESISTANT RAT

4.1 Introduction 62
4.2 Materials and methods 64
4.2.1 Tissue samples 64
4.2.2 Gene expression for PPARα, PPARγ, TNF-α, GLUT1 and GLUT4 64
4.2.3 Data analysis 67
4.3 Results 68
4.4 Discussion 77
4.5 Conclusions 81

5 EFFECT OF DIETARY FATTY ACID ON PERFORMANCE OF THE RAT IN MORRIS WATER MAZE PERFORMANCE

5.1 Introduction 82
5.2 Materials and methods 84
5.2.1 The Morris water maze 84
5.2.2 Spatial acquisitions trial training 84
5.2.3 Probe trial 87
5.2.4 Spatial reversal acquisition trial 87
5.2.5 Reversal probe trial 87
5.2.6 Data analysis 88
5.3 Results 89
5.4 Discussion 101
5.5 Conclusions 102

6 GENERAL DISCUSSION 103

7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 105

REFERENCES /BIBLIOGRAPHY 107
BIODATA OF STUDENT 149
LIST OF PUBLICATIONS 150
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Fatty acid composition of treatment oils</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Fatty acid composition of treatment diets</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Plasma fatty acid composition for all treatment groups</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Average body composition of rats for all treatment groups</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Name and sequence of primers used in the study</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Effects of adipokine released by adipose tissue on glucose metabolism</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Top view and lateral view of haemocytometer</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Haemocytometer grid and its dimension</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Counting system on the haemocytometer (the Trident Rule)</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Fat cells on haemocytometer under microscopic view</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Average body weights of rats for all treatment groups during the feeding trial</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Average feed intakes of rats for all treatment groups during the feeding trial</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Plasma leptin concentration of rats for all treatment groups at week 20</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>Carcass composition of rat after dietary supplement intervention</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>IPGTT glucose tolerance curve across treatment groups at week 10</td>
<td>42</td>
</tr>
<tr>
<td>3.10</td>
<td>IPGTT glucose tolerance curve across treatment groups at week 20</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>Glucose area under the curve (AUC) from IPGTT at week 10 and 20 of feeding trial</td>
<td>44</td>
</tr>
<tr>
<td>3.12</td>
<td>Plasma glucose concentration changes across treatment groups following IPITT at week 10 of treatment</td>
<td>46</td>
</tr>
<tr>
<td>3.13</td>
<td>Plasma glucose concentration changes across treatment groups following IPITT at week 20 of treatment</td>
<td>47</td>
</tr>
<tr>
<td>3.14</td>
<td>Glucose area under the curve (AUC) comparisons following IPITT between week 10 and week 20</td>
<td>48</td>
</tr>
<tr>
<td>3.15</td>
<td>Plasma insulin across treatment groups at week 20 during IPGTT</td>
<td>49</td>
</tr>
</tbody>
</table>
3.16 Insulin area under the curve (AUC) for all treatment groups at week 20 for IPGTT

3.17 Glucose insulin index at week 20 for all treatment groups

3.18 Liver sections after week 20

4.1 Level of TNF-α expression in the liver of the treatment groups compared to the CD group

4.2 Level of TNF-α expression in the adipose tissue of the treatment groups compared to the CD group

4.3 Level of PPAR-γ expressions in the adipose tissue of the treatment groups compared to the CD group

4.4 Level of PPAR-α expressions in the liver of the treatment groups compared to the CD group

4.5 Level of GLUT4 expressions in the liver of the treatment groups compared to the CD group

4.6 Level of GLUT4 expressions in the adipose tissue of the treatment groups compared to the CD group

4.7 Level of GLUT1 expressions in the adipose tissue of the treatment groups compared to the CD group

4.8 Level of GLUT1 expressions in the liver of the treatment groups compared to the CD group

5.1 Morris water maze

5.2 Top view from the overhead video camera during a trial in the Morris Water Maze

5.3 Average distances travelled by rats during the first 5 days of spatial acquisitions trial

5.4 Average distances travelled by rats during the spatial reversal acquisition trial after probe trial

5.5 Average escape latencies during the first 5 days of spatial acquisitions trial
5.6 Average escape latencies during spatial reversal acquisition trial across treatment groups after completing the probe trial

5.7 The average speed during the first 5 days of spatial acquisition trial

5.8 The average speed during the spatial reversal acquisition trial after probe trial across treatment groups

5.9 Relative distance travelled in each quadrant in the probe trial where the target quadrant is SW (South West) quadrant

5.10 Relative time spent in each quadrant in the probe trial where the target quadrant is SW (South West) quadrant

5.11 Relative distance travelled in each quadrant in the reverse probe trial where the target quadrant is NE (North East)

5.12 Relative time spent in each quadrant in the probe trial where the target quadrant is NE (North East)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ACH</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha-linolenic acid</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>ARC</td>
<td>Arcuate nucleus</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain barrier</td>
</tr>
<tr>
<td>BF₃</td>
<td>Boron trifluoride</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CA</td>
<td>Cornu Ammonis</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPA</td>
<td>Docosapentaenoic acid</td>
</tr>
<tr>
<td>EFA</td>
<td>Essential fatty acid</td>
</tr>
<tr>
<td>EIA</td>
<td>Enzyme immunoassay</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty acid</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty acid methyl ester</td>
</tr>
<tr>
<td>FFAs</td>
<td>Free fatty acids</td>
</tr>
<tr>
<td>FM</td>
<td>Fat mass</td>
</tr>
</tbody>
</table>
GLA Gamma-linolenic acid
GLUT Glucose transporter
HDL High density lipoprotein
IL-1 Interleukin-1
IL-6 Interleukin-6
IPGTT Intraperitoneal glucose tolerance test
IPITT Intraperitoneal insulin tolerance test
IR Insulin resistance
IRS Insulin receptor substrate
IRS-PI3-K Intrinsic receptor substrate-phosphatidylinositol 3-kinase
KATP ATP-sensitive K+
LA Linoleic acid
MCP Monocyte chemotatic protein
MEC Medial entorhinal cortex
MUFA Monounsaturated fatty acid
n-3 PUFA Omega-3 polyunsaturated fatty acid
n-6 PUFA Omega-6 polyunsaturated fatty acid
NAFLD Non-alcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
NE Northeast
NPY Neuropeptide Y
NW Northwest
PCR Polymerase chain reaction
POMC Proopiomelanocortin

xviii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPAR</td>
<td>Peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>PPAR-α</td>
<td>Peroxisome proliferator-activated receptor-α</td>
</tr>
<tr>
<td>PPAR-γ</td>
<td>Peroxisome proliferator-activated receptor-γ</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RXR</td>
<td>Retinoid X receptor</td>
</tr>
<tr>
<td>S</td>
<td>South</td>
</tr>
<tr>
<td>SE</td>
<td>Southeast</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>SW</td>
<td>Southwest</td>
</tr>
<tr>
<td>T1D</td>
<td>Type-1 diabetes</td>
</tr>
<tr>
<td>T2D</td>
<td>Type-2 diabetes</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor-α</td>
</tr>
<tr>
<td>VF</td>
<td>Visceral fat</td>
</tr>
<tr>
<td>W</td>
<td>West</td>
</tr>
<tr>
<td>α-MSH</td>
<td>Alpha melanocyte-stimulating hormone</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Insulin resistance has received more attention recently not only because it precludes type-2 diabetes (T2D) but also as a predictor of increased risk for cardiovascular disease such as coronary heart disease and hypertension. The coexistence of these diseases has been known as metabolic syndrome and an estimated 250 million people worldwide will be affected by T2D by the year 2020. Even though the primary factors causing this disease are still unknown, there is an indication that insulin resistance played a vital part in the development of these metabolic diseases. This is due to evidence showing the relationship between insulin resistance and T2D. The state of insulin resistance is achieved when normal insulin production does not commensurate with the insulin response by the body. Hence, any defect of the insulin signalling pathway can in fact lead to insulin resistance.

Generally, the public has misconception that insulin resistance only happens to those who are overweight, or those with high levels of sugar intake. In reality, insulin resistant can also happen to normal weighted person of any age group. Insulin resistance can be prevented and even reversed by changing to a healthy lifestyle by eating healthy and incorporating an exercise regime.

Insulin resistance is on the rise because of the poor dietary balance and lack of physical activities among affluent societies of the 21st century. Early human societies at the dawn of time focused in hunting and gathering food and this simple act comprises of two key elements: obtaining whole foods straight from the environment and exercising hard in the process of gathering food. In modern society, ready availability of foods led to reduced physical movements. Modern process foods had lesser nutritional value and most contained highly refined carbohydrate, preservatives, pesticides, trans-fats, toxins and high sugar level which becomes factors that contribute to insulin resistance (Draznin, 2003).

Insulin resistance is an important sign pointing to the dysregulation of glucose metabolism. A 2006 survey showed that there are more than 371 million people worldwide affected by diabetes of which in Malaysia, about 1.2 million adults aged from 30 years and above was affected. From this number, about 98% Malaysians with diabetes suffer from T2D (Wan Nazaimoon et al., 2013). Approximately 1 in 3 Malaysians are suffering from, or at risk of being diabetic. This number continued to increase from year to year as shown by the survey done by The 2011 National Health & Morbidity Survey (NHMS). It is estimated that by 2020, Malaysia will have approximately 4.5 million people with diabetes. In the first report from NHMS in year 1986, the results showed that 6.3% of the population aged 30 and above were suffering from diabetes. Ten years later in 1996, the percentage rose to 8.3 and in 2006 to 14.9%. Recently in year 2011, the number increased to 20.8%. This is an alarming situation with the proposition of population with diabetes increase...
exponentially. In the United States, 25.8 million people or about 8.3% of the United States population suffers from diabetes (Centers for Disease Control and Prevention, 2011). Type-2 diabetes typically develops after the age of 30 and the risk increases with age. It is not obvious until the patient is been treated for one of its serious complications.

The onset of insulin resistance can be prevented or reversed by understanding the role of insulin in modulating the uptake of glucose in the body. This is because insulin plays a role in directing the cells to take in glucose from bloodstream and excess glucose intake will be stored as glycogen. It is crucial to understand the roles of dietary factors, such as fatty acids and their inter-relationships with insulin resistance. The findings will be invaluable as these will potentially elucidate how body fats and body composition play their role in the regulation of blood glucose, as well as understanding the potential changes in the liver when insulin resistance sets in. The current study was capped with a segment investigating whether insulin resistance had any plausible link to cognition and spatial memory as the brain is very much dependent on glucose as a primary fuel source.

Hypothesis

It was postulated that the increased presence of omega-3 polyunsaturated fatty acid (n-3 PUFA) in the body will reduce fat accretion and subsequently reduce the leptin level in the body. Furthermore, incorporating n-3 PUFA will increase membrane fluidity and this consequently improves insulin sensitivity. It is also further hypothesised that diets high in n-3 PUFA will result in the up-regulation of PPAR activities, and facilitated GLUT expression on cellular membrane, leading to better glucose sensitivity despite higher dietary fat intake. The net effects of these developments will be the delayed onset of insulin resistance. Cognitive performance and spatial memory was not hypothesised to be affected by insulin resistance within the framework of this study.

Research objectives

1. To determine the associated changes in insulin sensitivity, changes in body fat accretion and circulating leptin levels due to n-6 and n-3 PUFA supplementation.
2. To determine the histological changes in liver associated with insulin resistance, and as a result of dietary intervention.
3. To investigate the effects of dietary fatty acid intake on TNF-α, PPAR-α and PPAR-γ gene expression in the onset of insulin resistance.
4. To examine the effects of different dietary fatty acid intake on the expression of GLUT1 and GLUT4 on cellular membranes.
5. To determine the effects of n-6 and n-3 PUFA supplementation through dietary intervention on cognitive performance and spatial memory learning in the rat model.
REFERENCES

Caughey, G.E., Mantzioris, E., Gibson, R.A., Cleland, L.G. and James, M.J. 1996. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of
diets enriched in n-3 fatty acids from vegetable oil or fish oil. American Journal of Clinical Nutrition 63(1): 116-122.

Dore, S., Kar, S., Rowe, W. and Quirion, R. 1997. Distribution and levels of 125I-IGF1, 125I-IGF2 and 125I-insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience 80: 1033-1040.

Gnudi, L., Tozzo, E., Shepherd, P., Bliss, J. and Kahn, B. 1995. High level overexpression of glucose transporter-4 driven by an adipose specific promoter is maintained in transgenic mice on a high fat diet, but does not prevent impaired glucose tolerance. Endocrinology 136: 995-1002.

Kennedy, A., Martinez, K., Chuang, C.C., LaPoint, K. and McIntosh, M. 2009. Saturated fatty acid-mediated inflammation and insulin resistance in

Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proceedings of the National Academy of Sciences USA 94: 4318-4323.

Lillioja, S., Mott, D.M., Zawadzki, J.K., Young, A.A., Abbott, W.G. and Bogardus, C. 1986. Glucose storage is a major determinant of in vivo "insulin resistance" in

Mager, D.R., Mazurak, V., Rodriguez-Dimitrescu, C., Vine, D., Jetha, M., Ball, G. and Yap, J. 2013. A meal high in saturated fat evokes postprandial dyslipemia,

PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes and Development 16: 27-32.

Rovito, D., Giordano, C., Vizza, D., Plastina, P., Barone, I., Casaburi, I., Lanzino, M., De Amicis, F., Sisci, D., Mauro, L., Aguila, S., Catalano, S., Bonificio, D. and

