UNIVERSITI PUTRA MALAYSIA

EPIDEMIOLOGY AND ECONOMIC IMPACT OF BOVINE BRUCELLOSIS
IN PENINSULAR MALAYSIA

MUKHTAR SALIHU ANKA

FPV 2014 6
EPIDEMIOLOGY AND ECONOMIC IMPACT OF BOVINE BRUCELLOSIS
IN PENINSULAR MALAYSIA

By
MUKHTAR SALIHU ANKA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

Dedicated to my mum Hajiya Safiya Salihu Anka for her love and support.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EPIDEMIOLOGY AND ECONOMIC IMPACT OF BOVINE BRUCELLOSIS IN PENINSULAR MALAYSIA

By

MUKHTAR SALIHU ANKA

January 2014

Chairman: Latiffah Hassan, PhD
Faculty: Veterinary Medicine

Bovine brucellosis is an important bacterial disease in cattle and other bovine species including bison, elk and buffalo and is mainly caused by the bacterium *Brucella abortus*. Brucellosis is a zoonotic disease with serious economic impact to livestock industry in both developed and developing countries. The present study was carried out to understand the epidemiology of bovine brucellosis in Peninsular Malaysia; to describe its occurrence and distribution, to evaluate spatial and temporal clusters pattern and distribution, to identify potential risk factors associated with bovine brucellosis, to assess economic impact of bovine brucellosis to farmers and costs of monitoring, control and eradication to government and finally to evaluate the effectiveness of culling policy of area-wise eradication program of brucellosis in Peninsular Malaysia.

A retrospective examination of surveillance data between 2000 and 2008 was carried out to investigate the presence and occurrence of bovine brucellosis in Peninsular Malaysia. The findings showed that bovine brucellosis is widely distributed across the peninsula. The annual seroprevalence for the 9-year study period was 2.7% and 21.7% for individual animal and herd level prevalence respectively. The herd prevalence fluctuated but remained high within the period of the study while animal prevalence was comparatively low but has a more discerning trend over the study period. In the second study, data on the surveillance activities was aggregated into district level due to lack of farm coordinate and confidentiality of the farm centriole of the districts was used as the coordinate to run spatial and temporal cluster, the ArcGIS and Sat Scan softwares were used for the analysis. The result showed that bovine brucellosis clustered in both space and time and cluster pattern confirmed the earlier finding of similar trend. Three clusters were detected: the first cluster around the state of Pahang and part of Johor covering 5 districts with 68 km radius, the second cluster was situated in Kelantan covering large area of 230 km with 51 districts and the third cluster was in Selangor affecting 6 districts covering 34 km. However, the cluster was not statistically significant. High risk areas (hot spot) were also detected to be around the clusters identified.
A case-control study was conducted in four states of Peninsular Malaysia: Kelantan, Pahang, Negeri Sembilan and Selangor whereby 71 farmers were interviewed to investigate the potential risk factors associated with bovine brucellosis in Peninsular Malaysia. Blood and vaginal swabs from cattle, whenever permissible, were collected to detect *Brucella abortus*. Questionnaire on the herd-level risk factors was developed including information on general farm management, biosecurity, medical history and public health awareness. Serological tests as well as culture and identification test were performed on the samples using Rose Bengal Plate Test and *Brucella* agar with supplement respectively. Univariate analysis was conducted for the potential risk factors and disease status and variables significant on the analysis were modeled into multivariate logistic regression. Seroprevalence was 1.8% (n=282) but samples were cultured negative. The Potential risk factors included farmers with more than one species of animals, presence of wildlife and history of abortion. About 78.9% of the farmers participated in the survey reported assisting their animals during delivery and 71.8% had not been using basic personal protective equipments such as glove and face mask to protect them from potentially contracting the infection. Similarly, 2.8% reported consumed unpasteurized milk from their animals. In addition, 19.7% have had episodes of fever with one farmers experienced undulant fever, and was later diagnosed as infected with brucellosis.

A case-control study assessed the direct economic impact of bovine brucellosis in Peninsular Malaysia. This study incorporated the data from 71 farms based on the record of year 2010, surveillance data from DVS, data from DVS statistics on estimated cattle population and some conservative assumption based on proxy. The estimated direct economic cost of bovine brucellosis in Peninsular Malaysia was calculated using a simple spread sheet tool based on established method by Bennett et al 2003. The total economic loss in 2010 from sampled farms due to bovine brucellosis was estimated to be RM 1,445,367.30. Resources spent for the control and eradication accounted for 21% (RM302, 036) of the lost. This included the cost of vaccination of RM 13,736.00 and compensation cost of RM 288, 300.00 There were also significant devastating impacts to livestock farmers which accounted for 79% (RM 1,143,331.30) of the cost which included milk reduction losses of RM54, 581.30, partial carcass condemnation of RM 961,000.00 and loss due to abortion accounted for RM 127,750.00.

A cross-sectional survey was carried out to evaluate the efficiency of the culling process prescribed for seroreactor cattle in Malaysia. Fourteen abattoirs in four states: Kelantan, Pahang, Negeri Sembilan and Selangor were visited and data on culled cattle from 2005 to 2008 were examined. The data was managed and analysed using Microsoft Excel. A total of 1,954 cattle were culled in the 14 abattoirs in the four states from 2005 to 2008. In 2005, 157.9% seropositive cattle were culled and for 2006, 2007 and 2008 only 51.5, 41.0 and 88.4% were culled respectively. The state of Selangor has the highest culling rate of 114.2%, followed by Pahang (94.0%), Negeri Sembilan (22.0%) while Kelantan had no record of culling within the study period. The overall culling rate for the studied states within the study period was 72.16%.

In conclusion, bovine brucellosis in Peninsular Malaysia is widely distributed with major clustering of high risk areas. The disease occurrence was associated with several factors such as system of management, other species of animal in the farm and history of abortion. The economic burden of the disease was significant and
estimated to be RM 1,445,367.30 in the year 2010. The area-wise eradication program of brucellosis was shown to be effective in reducing the prevalence. However, there is a need for improvement especially in area of enforcement of the culling policy.
Abstrak tesis yang dipersembahkan kepada senat University Putra Malaysia
Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

EPIDEMIOLOGI DAN IMPAK EKONOMI BRUSOLOSIS BOVIN DI
SEMENANJUNG MALAYSIA

Oleh

MUKHTAR SALIHU ANKA

January 2014

Pengerusi: Latiffah Hassan, PhD
Fakulti: Perubatan Veterinar

Bruselosis bovin merupakan penyakit yang disebabkan oleh bakteria *Brucella abortus* pada lembu dan spesies lain termasuk banteng, rusa dan kerbau. Brucelosis adalah penyakit zoonosis yang memberi kesan ekonomi yang serius kepada industri ternakan di negara maju dan membangun. Kajian ini telah dijalankan untuk memahami epidemiologi bruselosis lembu di Semenanjung Malaysia, untuk menggambarkan kejadian dan taburan, untuk menilai corak gugusan ruang dan masa dan taburan, untuk mengenalpasti faktor risiko berkaitan dengan bruselosis lembu, untuk menilai kesan ekonomi disebabkan oleh penyakit ini kepada petani dan kos kepada kerajaan untuk program pemantauan, kawalan dan pembasmian dan akhirnya untuk menila keberkesanan dasar penusunan program pembasmi bruselosis di Semenanjung Malaysia.

Satu kajian kes-kawal telah dijalankan di empat negeri di Semenanjung Malaysia; Kelantan, Pahang, Negeri Sembilan dan Selangor di mana 71 petani telah ditemuramah tentang faktor risiko yang berpotensi berkait dengan bruselosis lembu.
di Semenanjung Malaysia. Darah dan swab vagina lembu, bilamane dibenarkan, dikumpulkan untuk mengesan Brucella abortus.. Soal selidik faktor risiko kumpulan peringkat telah dibina termasuk maklumat mengenai pengurusan am ladang, biosekuriti, sejarah perubatan dan kesedaran kesihatan awam kepada petani. Serologi dan kultur dan pengenalpastian telah dijalankan ke atas sampel menggunakan Ujian Rose Bengal dan agar Brucella dengan makanan tambahan. Analisis univariat telah dijalankan untuk faktor risiko yang berpotensi dan status penyakit dan pembolehubah yang bekecierian pada analisis dimasukkan ke model regresi logistik multivariat. Seroprevalens yang diperolehi ialah 1.8% (n = 282) tetapi sampel diempati negeri pada kultur. Faktor risiko potensi yang dikenalpasti adalah petani dengan lebih dari satu spesies haiwan, kewujudan hidupan liar dan sejarah keguguran. Lebih kurang 78.9% daripada petani mengambil bahagian dalam kajian melaporkan membantu haiwan mereka sewaktu proses kelahiran dan 71.8% didapati tidak pernah menggunakan peralatan asas perlindungan peribadi seperti sarung tangan dan topeng muka untuk melindungi mereka daripada dijangkiti oleh jangkitan tersebut. Begitu juga 2.8% dilaporkan minum susu dari haiwan mereka yang tidak dipasturkan. Di samping itu, 19.7% mempunyai episod demam dimana seorang daripada petani tersebut mengalami demam undulan, dan kemudiannya telah didiagnosis dengan bruselosis.

ACKNOWLEDGEMENTS

I wish to express my profound gratitude to Almighty Allah for giving me the opportunity and wisdom in pursuing through to this achievement. I am grateful to the Chairperson of my PhD committee, Assoc Prof Dr Latiffah Hassan for her continuous coaching and support throughout the years of my PhD, for burning the midnight oil reading, re-reading and revising my work, for asking insightful comments and questions, and for offering invaluable advice. Assoc Prof Dr. Siti Khairani Bejo, Professor Dr. Zaianal Abidin Mohamed and Dr. Ramlan Bin Muhamad for their invaluable guidance, advice, encouragement through the course of the study and in preparation of this thesis. Without their patience, support and contribution, I wouldn't have accomplished the goal of finishing this dissertation.

I am especially grateful to the Department of Veterinary Services Putrajaya and Veterinary Research Institute Ipoh, state and district veterinary department staff and owners of farms in the four states we visited for granting me the permission to collect samples and for their time in helping me interviewing the farmers. I thank the managers of the abattoirs in Pahang, Selangor, Kelantan and Negeri Sembilan for their assistance in providing us with data. Specifically, my gratitude goes to Dr. Azri Adzhari, late Dr. Roosevien Farida Nilawati Rachmat of the DVS Putrajaya for their help and assistance during the course of the study.

Additionally I appreciate the help of Dr. Annas Saleh, Dr. Muhamad Salim Bin Tahir for their kind assistance during our data collection, thank you for helping me converse with the farmers. Special thanks to the staff who accompanied me to the field during our farm sampling, individuals like En Mohd Faizal Bin Abdullah, En Amin bin Abd.Hamid, Puan Nazira Abu, En Mohd Helmy Bin Mahroob, En Azri bin Samin, Encik Wan Azaman bin Wan Mahmud, Encik Hassan Gua Musang, and many more that I may not have enough space to mention here.

To my colleagues and friends especially Dr. Ibrahim Abubakar Anka, Dr. Abdulrasheed Bello Aliyu, Dr. Hassan Ismail Musa, Dr. Adamu Abubakar Yarima, Dr. Khumran Armiyau Mada, Dr Kabir Sahabi Kalgo, Nasiru Matazu for their guidance from the inception to the completion of this study, thank you. They have been instrumental in helping me shape my thesis and providing me with insight to the joys (and stress) of academic research. My thanks are due to Encik Hafiz, Encik Hajar and Cik Krishnamma in the Bacteriology Laboratory, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia for their technical assistance.

I am especially grateful to my Director of Veterinary Service in Zamfara State Directorate of Livestock Development Dr. Auwal Bawa Moriki for his encouragement during my study. Special thanks also go to my colleagues Dr. Bello Mainasara Shinkafi, Dr. Muhammad Muhammad Bagudu and Dr. Usman Ismail Gusau all in Zonal Veterinary Clinic Gusau Zamfara State for their support.

I am especially gratitude to my parents specifically my mother Hajiya Safiya Anka and my late Father Alhaji Salihu Anka for giving me guidance, support and prayers. My heartfelt appreciation goes to my wife Miss Maryam Anka, whose dedication,
love and persistent confidence in me has taken the load off my shoulder. To my son
Al-ameen Mukhtar Anka, you are the source of strength and perseverance. It was you
who motivated me when times were difficult and I felt like there was no light at the
end of the tunnel. One love to my brothers and sisters for their support and
encouragement, especially Sani Salihu Anka for his motivation and assistance.

Finally, I would like to thank everyone who has contributed to the successful
realization of this thesis, as well as expressing my apology that I could not mention
them personally one by one.
I certify that a thesis examination committee has met on 08/01/2014 to conduct the final examination of Mukhtar Salihu Anka on his thesis entitle “Epidemiology and Economic Impact of Bovine brucellosis in Peninsular Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 march 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy

Member of the Thesis Examination Committee were as follows:

Abdul Rahim bin Abdul Mutalib, PhD
Associate Professor
Faculty of veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Saleha bt Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Mohd Zamri b Saad, PhD
Professors
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Husni Omar Mohammed, Phd
Professor
Population Medicine & Diagnostic Sciences
College of Veterinary Medicine
Cornell University
United States
(External Examiner)

Noritah Omar, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 February 2014
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Latiffah Hassan, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Siti Khairani Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohamed Zainal Abidin, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Ramlan Bin Mohamed, PhD
Director
Veterinary Research Institute, Ipoh
(Member)

BUJANG BIN KIM HUAT, PHD
Professor and Dean
School of graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: 8 January 2014

Name and Matric No.: Mukhtar Salihu Anka
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

2.1 Background

2.2 The organism

2.3 Epidemiology of bovine brucellosis

2.3.1 Brucella infection in cattle

2.3.2 Clinical sign

2.3.3 Mode of transmission and route of exposure

2.3.4 Reservoir

2.3.5 Source and level of exposure

2.3.6 Distribution and occurrence

2.4 Pathogenesis of brucellosis

2.5 Virulence and pathogenicity

2.6 Diagnosis

2.7 Risk factors influencing transmission of brucellosis

2.7.1 Risk factors influencing transmission between herd

2.7.2 Risk factors influencing intra-herd transmission

2.7.3 Host susceptibility

2.8 Public health significant

2.9 Geographical information system

2.10 Economic impact of brucellosis

2.11 Principles of control and eradication

2.11.1 Bovine brucellosis in Malaysia

2.11.2 Present situation

2.12 Conclusion and areas for future research

3 **DISTRIBUTION, PATTERN AND TREND OF BOVINE BRUCELLOSIS IN PENINSULAR MALAYSIA**

3.1 Introduction

3.2 Materials and methods
3.2 Study area

3.2.1 Study area

3.2.2 Data sources

3.2.3 Data analysis

3.2.4 Spatial distribution

3.3 Results

3.3.1 Descriptive study of seroprevalence and trend of bovine brucellosis

3.3.2 Spatial distribution

3.4 Discussion

3.5 Conclusions

4 SPATIO-TEMPORAL CLUSTER DISTRIBUTION OF BOVINE BRUCELLOSIS IN PENINSULAR MALAYSIA

4.1 Introduction

4.2 Materials and methods

4.2.1 Description of data

4.2.2 Purely spatial with Bernoulli probability model

4.2.3 Space-time with Bernoulli model

4.3 Results

4.4 Discussion

4.5 Conclusion

5 A CASE-CONTROL STUDY OF RISK FACTORS FOR BOVINE BRUCELLOSIS SEROPOSITIVITY IN PENINSULAR MALAYSIA

5.1 Introduction

5.2 Materials and methods

5.2.1 Study population

5.2.2 Study design

5.2.3 Data collection

5.2.4 Data analysis

5.3 Results

5.3.1 Description of the study herds

5.3.2 Univariate logistic regression

5.3.3 Multivariate logistic regression

5.3.4 Occupational risk and awareness among farmers about brucellosis

5.4 Discussion

5.5 Conclusion

6 ASSESSMENT OF ECONOMIC IMPACT OF BOVINE BRUCELLOSIS IN PENINSULAR MALAYSIA

6.1 Introduction

6.2 Materials and methods

6.2.1 Source of information/data

6.2.2 Assumptions

6.2.3 Data analysis

6.3 Results

6.4 Discussion

6.5 Conclusion
7 DESCRIPTIVE STATISTICS ON TESTING AND CULLING OF BOVINE BRUCELLOSIS SEROREACTORS BETWEEN 2005 AND 2008 IN PENINSULAR MALAYSIA
 7.1 Introduction 65
 7.2 Materials and methods 66
 7.2.1 Data source 66
 7.2.2 Data management and analysis 66
 7.3 Results 66
 7.4 Discussion 69
 7.5 Conclusion 72

8 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
 8.1 General discussion 73
 8.2 Conclusion 75
 8.3 Recommendations for future research 76

REFERENCES/BIBLIOGRAPHY 78
APPENDICES 99
BIODATA OF STUDENT 111
LIST OF PUBLICATIONS 112
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Herd-level seroprevalence of bovine brucellosis based on several factors in Peninsular Malaysia between 2000 and 2008</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Clusters identified (2000 to 2008) of bovine brucellosis in Peninsular Malaysia</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Characteristic of space-time cluster of bovine brucellosis in Peninsular Malaysia between 2000 and 2008</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Duration of space-time cluster of bovine brucellosis in Peninsular Malaysia from 2000 to 2008</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Management practice univariate analysis of potential risk factors for bovine brucellosis herd seropositivity in Peninsular Malaysia</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Biosecurity univariate analysis of potential risk factors for bovine brucellosis herd seropositivity in Peninsular Malaysia</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Medical history univariate analysis of potential risk factors for bovine brucellosis herd seropositivity in Peninsular Malaysia</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Multivariate logistic regression of potential risk factors for bovine brucellosis herd seropositivity in Peninsular Malaysia</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Potential risk of Brucella infection among cattle farmers</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Parameters for the calculation of bovine brucellosis economic impact in Malaysia</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Estimated direct cost of bovine brucellosis in Peninsular Malaysia for 2010</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Inferential estimated direct cost of bovine brucellosis in Peninsular Malaysia for 2010</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Number of cattle population and number of cattle sample between 2005 and 2008</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>The percentage of cattle culled from Pahang, Selangor, Kelantan and Negeri Sembilan from the total seropositive from year 2005 to 2008</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Geographical distribution of bovine brucellosis in the world</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Brucellosis pathogenesis.</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Annual Herd-Level Seroprevalence of Bovine Brucellosis in Peninsular Malaysia from 2000 to 2008.</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Annual cattle seroprevalence of bovine brucellosis in Peninsular Malaysia from 2000 to 2008.</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Annual seroprevalence of bovine brucellosis between 2000 and 2008 of herds in each state in Peninsular Malaysia</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Annual animal-level seroprevalence of bovine brucellosis between 2000 and 2008 in each state in Peninsular Malaysia</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Choropleth map showing the overall prevalence of seropositive herd in Peninsular Malaysia between 2000 and 2008.</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>Choropleth map showing the overall prevalence of seropositive cattle in Peninsular Malaysia between 2000 and 2008</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>Choropleth map showing the cattle population of Peninsular Malaysia in 2008</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Identified high risk areas and pattern of bovine brucellosis spread in Peninsular Malaysia from 2000 to 2008</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Result from the Space-time analysis showing significant cluster area (high risk) of bovine brucellosis in peninsular Malaysia during period 1 (2000 to 2003) shown in light brown, period 2 (2004 to 2007) shown in orange and Period 3 (2005 to 2008) shown in dark brown.</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Location of study areas, the shaded areas indicate the study state</td>
<td>44</td>
</tr>
<tr>
<td>6.1</td>
<td>Estimated direct loss (and percentages) due to bovine brucellosis in Peninsular Malaysia</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>Percentage burden to both farmers and government of bovine brucellosis for 2010</td>
<td>60</td>
</tr>
<tr>
<td>6.4</td>
<td>Inferential estimated direct loss (and percentages) due to bovine brucellosis in Peninsular Malaysia for 2010</td>
<td>60</td>
</tr>
<tr>
<td>6.4</td>
<td>Inferential percentage of burden to both farmers and government of bovine brucellosis for 2010</td>
<td>61</td>
</tr>
<tr>
<td>7.1</td>
<td>Total number and percentage of seroreactors and culled cattle</td>
<td>69</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Arc GIS</td>
<td>Geographic information system (GIS) software</td>
<td></td>
</tr>
<tr>
<td>AUSVETPLAN</td>
<td>Australian Veterinary Emergency Plan</td>
<td></td>
</tr>
<tr>
<td>CD4Tcell</td>
<td>Cluster of differentiation 4 timus dependent cells</td>
<td></td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
<td></td>
</tr>
<tr>
<td>CFSPH</td>
<td>Center for Food Security and Public Health</td>
<td></td>
</tr>
<tr>
<td>CFT</td>
<td>Complement Fixation Test</td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td>Department of Statistics Malaysia</td>
<td></td>
</tr>
<tr>
<td>DVS</td>
<td>Department of Veterinary Services</td>
<td></td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
<td></td>
</tr>
<tr>
<td>ESRI</td>
<td>Economic and Social Research Institute</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
<td></td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural organization of united nation</td>
<td></td>
</tr>
<tr>
<td>FMD</td>
<td>Food and Mouth Disease</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
<td></td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
<td></td>
</tr>
<tr>
<td>HPAI</td>
<td>Highly Pathogenic Avian Influenza</td>
<td></td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>Institute Haiwan</td>
<td></td>
</tr>
<tr>
<td>JHSPH</td>
<td>Johns Hopkins Bloomberg School of Public Health</td>
<td></td>
</tr>
<tr>
<td>JUPEM</td>
<td>Department of Survey and Mapping</td>
<td></td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
<td></td>
</tr>
<tr>
<td>MOA</td>
<td>Ministry of Agriculture</td>
<td></td>
</tr>
<tr>
<td>MTM</td>
<td>Malaysia-Thailand-Myanmar peninsula</td>
<td></td>
</tr>
<tr>
<td>NPC</td>
<td>National Poison Centre</td>
<td></td>
</tr>
<tr>
<td>OIE</td>
<td>International Organization for Animal Health</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
<td></td>
</tr>
<tr>
<td>PAHO</td>
<td>Pan American Health Organization</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed field gel electrophoresis</td>
<td></td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
<td></td>
</tr>
<tr>
<td>RB51</td>
<td>Strain RB51 vaccine</td>
<td></td>
</tr>
<tr>
<td>RBPT</td>
<td>Rose Bengal Plate Test</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>Malaysian Ringgit</td>
<td></td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>S19</td>
<td>Strain 19</td>
<td></td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
<td></td>
</tr>
<tr>
<td>VRI</td>
<td>Veterinary Research Institute</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Bovine brucellosis (Bang’s disease, Enzootic Abortion, Epizootic Abortion, Slinking of Calves, and Contagious Abortion) is an infectious disease in cattle and other species including bison, buffalo and elk caused by the bacterium Brucella abortus. This organism is a facultative intracellular pathogen with up to seven biovars (1-6 and 9) have been reported. Some of these biovars differ only slightly from each other biochemically (OIE, 2009). Other Brucella species that have been uncommonly associated with the disease in cattle including B. melitensis and B. suis (Carvalho et al., 2010).

Brucellosis is considered as a highly infectious zoonotic disease with a serious economic repercussion on both humans and animals (Radostits et al., 2000; Abernethy et al., 2006). Occupational exposure to Brucella has been reported in laboratory workers, farmers, veterinarians and others who are in contact with infected animals or tissues. Brucellosis is one of the most easily acquired laboratory infections (Robichaud et al., 2004). In addition, individuals who do not work with animals or tissues may become infected by ingesting unpasteurized contaminated milk or dairy products (Corbel, 2003). Infection in humans is manifested in the form of fever, lethargy and night sweats as initial symptoms. However, complication may set in as a result of chronic infection, which follows involvement of many organs and system such as liver, spleen, kidney and skeleton among others (Wright, 1997).

Major efforts have been undertaken around the world to control brucellosis in livestock due to its significant economic losses and the often debilitating consequences in humans (Halling & Boyle, 2002). The incidence of bovine brucellosis varies both within and between countries. Advances in the control and eradication practices have led to a significant reduction in the disease incidence or complete eradication in some countries, including the United Kingdom, Scandinavian countries, Australia, New Zealand, Canada, Finland, Norway and Sweden (Seleem et al., 2010). However, bovine brucellosis remains a significant threat in Africa, the Middle East, Central and South America, and Asia including Malaysia (Corbel, 2006). The disease is usually introduced into a herd from an infected animal, but may also enter the herd via semen from infected bulls and via contaminated fomites. Bovine brucellosis can be eradicated from a herd by test and culling or by depopulation. Other important measures for control and eradication are quarantine of infected animals and good surveillance system. Vaccination may be used to control this disease in endemic areas, or used as part of an eradication program (Nicoletti, 1984).

Spatial epidemiology has recently been used to aid in understanding of infectious diseases including those that are zoonotic in nature (Ostfeld et al., 2005). Understanding spatial distribution of diseases can provide an insight into their determinants and helps in their control (Ruankaew, 2005; JHSPH, 2006). Geographical distribution is a key element in the epidemiologic investigation, and several tools have been explored for spatial-related data (Auchincloss et al., 2012). The tools can be in the form of a simple map or more complex that includes modeling by which geographic distribution of diseases can be visualized and
analyzed in time. Therefore the map can reveal spatio-temporal trends, patterns, and relationships that are difficult to discover in tabular or other formats (Ruankaew, 2005). Spatial epidemiology of bovine brucellosis in Malaysia has not been explored. Knowledge about the spatial distribution is crucial for disease control and prevention.

Animal health economics is a growing discipline that is becoming more important as aid to decision making in livestock health at various stages. The stages of intervention and decision making range from individual animal to the national herd stage and largely to international disease mitigation effort (Otte & Chilonda, 1987). In recent years, there has been an increasing interest in estimating the magnitude of financial losses or impact of livestock diseases and control strategies (Bennett, 2003) in both developed and developing countries (FAO, 1962). Estimation of the overall financial losses due to bovine brucellosis in the country will help to demonstrate the magnitude of the economic damage caused by the disease, particularly to farmers, livestock industry and the country. Most of the study conducted in Malaysia concluded that bovine brucellosis is of economic importance. However, none has performed economic analysis to estimate the impact of disease on the livestock industry or farmers, nor evaluate possible cost of controlling the disease.

The study aimed to enhance the understanding on the epidemiology of bovine brucellosis in Peninsular Malaysia so that disease control can be tailored to the local disease situation. In addition, to substantiate the claim that the disease is of economic significance, an economic analysis was performed based on the data that were obtained during this research work and supported by other data that were not able to be gathered during this work.

Three major hypotheses were

1. Brucellosis is clustered in several areas in Peninsular Malaysia.
2. Several factors (risk) play a vital role in the occurrence of bovine brucellosis.
3. Bovine brucellosis causes a significant economic losses in the livestock industry in Malaysia

The specific objectives of this study were to:

1. determine the distribution, patterns and trends of the seroprevalence of bovine brucellosis in Malaysia between 2000 and 2008.
2. identify spatio-temporal distribution of bovine brucellosis in Peninsular Malaysia.
3. identify potential risk factors associated with bovine brucellosis among cattle herds.
4. estimate the direct economic impact of bovine brucellosis
REFERENCES

Cvetnić, Z., Spicić, S., Toncić, J., Majnarić, D., Benić, M., Albert, D., ... Garin-

Department of Statistics Malaysia. (2010). *Selected Indicators for Agriculture, Crops and Livestock Malaysia* (pp. 11–12).

Accessed 2013 August 27

Heng, N. and Joseph, P. (1986). Eradication of Brucellosis in cattle in Malaysia and its
public health. In Seminar on veterinary public health. Peatalin Jaya, Malaysia.

and its public health. In Seminar on veterinary public health (pp. 255–260).
Peatalin Jaya, Malaysia

Her, M., Kang, S.-I., Cho, D.-H., Cho, Y.-S., Hwang, I.-Y., Heo, Y.-R., … Yoo, H.-S.
(2009). Application and evaluation of the MLVA typing assay for the Brucella

Hesterberg, U.W., Bagnall, R., Perrett, K., Bosch, B., Horner, R. and Gummow, B.
(2008). A serological prevalence survey of Brucella abortus in cattle of rural
communities in the province of KwaZulu-natal, South Africa. Journal of

Brucella spp. infection in large ruminants in an endemic area of Egypt: cross-
sectional study investigating seroprevalence, risk factors and livestock owner’s

Hubálek, Z., Treml, F., Juríčková, Z., Huňady, M., Halouzka, J., Janík, V. and Bill,
D.(2002). Serological survey of the wild boar (Sus scrofa) for tularaemia and
brucellosis in South Moravia, Czech Republic. Veterinarni Medicina, 47(2-3):60–
66.

Hugh-Jones, Ellis, M.N. and Felton, P.R. (1975). An Assessment of the Eradication
of Bovine Brucellosis in England and Wales. Study No. 19. University of Reading,
England.

Application of pulsed-field gel electrophoresis for differentiation of vaccine
strain RB51 from field isolates of Brucella abortus from cattle, bison, and elk.
American Journal Of Veterinary Research, 56(3):308–312.

Jergefa, T., Kelay, B., Bekana, M., Teshale, S., Gustafson, H. and Kindahl, H.
(2009). Epidemiological study of bovine brucellosis in three agro-ecological areas
of central Oromiya, Ethiopia. Revue scientifique et technique International Office
of Epizootics, 28(3), 933–943.

emergencies. by The Johns Hopkins and the International Federation of Red Cross
and Red Crescent Societies. The Johns Hopkins and the International Federation
of Red Cross and Red Crescent Societies.

PAHO. (2001). Zoonoses and communicable diseases common to man and animals, Bacterioses and mycoses, 1:

Rushton, J. (2009). The economics of animal health and production. (electronicsource) CABI.

