UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF CUT CHRYSANTHEMUM (Chrysanthemum morifolium Ramat.) PRODUCTION IN SUBSTRATE CULTURE UNDER RESTRICTED ROOT VOLUME

TAWEESAK VIYACHAI

FP 2015 45
DEVELOPMENT OF CUT CHrysanthemum (Chrysanthemum morifolium Ramat.) PRODUCTION IN SUBSTRATE CULTURE UNDER RESTRICTED ROOT VOLUME

By

TAWESAK VIYACHAI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF CUT CHRYSANTHEMUM (*Chrysanthemum morifolium* Ramat.) PRODUCTION IN SUBSTRATE CULTURE UNDER RESTRICTED ROOT VOLUME

By

TAWESAK VIYACHAI

September 2015

Chairman : Associate Professor Thohirah Lee Abdullah, PhD
Faculty : Agriculture

The effects of three different substrate volumes (34, 73, 140 cm³) and three different substrates (coconut peat 100 %, burnt rice husk 100 % and coconut peat+burnt rice husk 50:50) grown at 64 plant/m² were investigated. Plant height and the total leaf area of chrysanthemums reduced significantly when substrate volume decreased regardless of substrate type but chrysanthemum grown in substrate volume of 140 cm³ being produced at the highest plant height. Chrysanthemums grown in substrate volume of 140 cm³ had the largest root surface area. The relative water content and macro elements in leaves did not differ significantly between treatments. Chrysanthemums grown in restricted root volume had high proline levels throughout growth period. Root:shoot ratio did not differ between treatments. Plants grown in substrate volume of 140 ml showed the highest number of flower of 17.79 and flower diameter of 20.82 cm.

The effects of two substrate volumes (73 and 140 cm³) and three irrigation frequencies (4, 6, 8 times/day) were investigated to determine a suitable irrigation frequency for the growth and flowering of cut chrysanthemum grown under restricted root volume. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. The tallest plant of 109.25 cm was obtained from chrysanthemum, grown at 140 cm³ irrigated 6 times/day. Chrysanthemum irrigated 6 and 8 times/day had significantly higher phosphorus content in leaf than being irrigated 4 times/day. The total dry weight of chrysanthemum irrigated 6 and 8 times/day was higher than 4 times/day 32% and 23% consequently. Chrysanthemum irrigated 8 times per day had the highest number of flower, indicated at 20.44. In conclusion, chrysanthemum grown in substrate volume of 140 cm³ had better growth and flower quality than in 73 cm³. The growth and flowering of chrysanthemum irrigated 6 and 8 times/day were better than 4 times/day.
The effects of two chrysanthemum varieties (‘New White’ and ‘New Yellow’) and three different plant densities (64, 81 and 99 plants/m²) were investigated to determine a suitable plant density for the growth and flowering to determine financial possibility. For instance, the plant grown at 81 plants/m² had higher leaf area index than at 64 plants/m². The pedicel length of plant density of 99 plants/m² was longer than of 64 plant/m² 18.33% and the stem fresh weight and total dry weight did not differ between three plant densities. Plant densities also did not significantly affect photosynthesis rate, transpiration rate, stomatal conductance, and Fv/Fm. Other than that, chrysanthemum grown at 99 plants/m² had the highest plant height but at the same time did not significantly differ from other two plant densities. Plant densities did not significantly affect the day of flowering, the number of flower, flower diameter, inflorescence diameter, flower color and vase life. These results indicated that under root restriction, chrysanthemum could be grown at high plant densities up to 99 plants/m². From the gross profit analysis, chrysanthemum ‘New White’ and ‘New Yellow’ grown at 81 plants/m² provided highest margin.

The last experiment investigated the growth and flowering, perception of growers, distributors and consumer and financial feasibility of chrysanthemum cultivated in the tray and the trough system. Furthermore, the growth and flowering of chrysanthemum produced in the tray system almost did not differ from the trough system. However, the yield of chrysanthemum produced in the trough system was higher than of the tray system significantly. Besides that, the quality of chrysanthemum produced in the tray and the trough system received very good scores from growers, distributors and consumers in almost all characteristics. From the gross profit analysis, the tray system had higher profit than the trough system but both of them were lower than that of soil-based system.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PERKEMBANGAN PENGENLURAN BUNGA KERATAN KEKWA
(Chrysanthemum morifolium Ramat.) DALAM KULTUR SUBSTRAK DI
BAWAH ISIPADU AKAR TERSEKAT

Oleh

TAWEESAK VIYACHAI

September 2015

Pengerusi : Profesor Madya Thohirah Lee Abdullah, PhD
Fakulti : Pertanian

Kesan tiga isipadu media (34, 73, 140 cm3) dan tiga jenis media berlainan
(tanah gambut sabut kelapa 100%, sekam padi bakar 100% dan tanah
gambut sabut kelapa 50:50) dengan kepadatan tanaman 64 pokok/m2
telah dikaji. Ketinggian pokok dan jumlah luas permukaan daun kekwa berkurang
dengan nyata apabila isipadu media berkurang tanpa mengira jenis media
tetapi kekwa yang ditanam dalam isipadu media 140 cm3 mencatatkan tinggi
pokok dan jumlah luas permukaan akar yang paling banyak. Kandungan air
bandingan dan unsur makro pada daun tidak menunjukkan perbezaan yang
nyata antara rawatan. Kekwa yang ditanam di bawah isipadu akar yang
terhad mengandungi paras proline yang tinggi sepanjang tempoh pertumbuhan.
Nisbah akar: pucuk tidak berbeza antara rawatan. Kekwa yang ditanam
dalam isipadu media 140 cm3 menghasilkan bilangan bunga (17.79 bunga)
dan diameter bunga (20.82 cm) yang paling tinggi.

Kesan dua isipadu media (73 dan 140 cm3) dan tiga kekerapan pengairan
(4, 6, 8 kali/hari) telah dikaji untuk menentukan kekerapan pengairan yang
sesuai untuk pertumbuhan dan pembungaan kekwa yang bertujuan untuk
dijadikan bunga keratan yang ditanam di bawah isipadu akar yang terhad.
Interaksi antara kekerapan pengairan dan isipadu media ke atas tinggi
pokok kekwa telah diperhatikan. Kekwa yang paling tinggi (109.25 cm) telah
diperoleh menggunakan isipadu media dan kekerapan pengairan 6 kali/ hari.
Daun kekwa yang disiram 6 dan 8 kali/hari mengandungi paras fosforus
yang nyata lebih tinggi berbanding dengan 4 kali/ hari. Jumlah berat kering
kekwa yang disiram 6 dan 8 kali/ hari adalah lebih tinggi berbanding 4 kali/ hari
32% dan 23% masing-masing. Kekwa yang disiram 8 kali/hari
menghasilkan bilangan bunga yang paling banyak (20.44 bunga).
Kesimpulannya, kekwa yang ditanam dalam isipadu media 140 cm3
menunjukkan pertumbuhan dan kualiti bunga yang lebih bagus berbanding

iii
dengan isipadu media 73 cm³. Kekwa yang disiram 6 dan 8 kali/hari menunjukkan pertumbuhan dan pembungaan yang lebih bagus berbanding dengan 4 kali/hari.

Kesan dua varieti kekwa (‘New White’ dan ‘New Yellow’) dan tiga kepadatan penanaman (64, 81 dan 99 pokok/m²) telah dikaji untuk menentukan kepadatan penanaman yang sesuai untuk pertumbuhan dan pembungaan kekwa dan juga untuk menentukan kebolehlaksanaan kewangan. Kekwa yang ditanam pada 81 pokok/ m² mencatatkan indeks luas daun yang lebih tinggi iaitu berbanding dengan kekwa yang ditanam pada 64 pokok/m². Kekwa yang ditanam pada kepadatan tanaman 99 pokok/ m² mencatatkan tangkai bunga 18.33% lebih tinggi berbanding dengan kepadatan tanaman 64 pokok/m². Berat basah batang dan jumlah berat kering tidak berbeza antara ketiga tiga kepadatan tanaman tersebut. Kepadatan tanaman tidak mempengaruhi fotosintesis, transpirasi, kekonduksian stomata dan Fv/Fm. Kekwa yang ditanam pada 99 pokok/m² mencatatkan tinggi pokok yang paling banyak (61.28 cm) tetapi ianya tidak berbeza secara nyata dari pada dua kepadatan tanaman lain yang dika. Kepadatan tanaman tidak mempengaruhi secara nyata hari pembungaan, bilangan bunga, diameter bunga, diameter kelompok bunga, warna bunga dan jangka hayat jambangan. Keputusan yang diperoleh menunjukkan bahawa di bawah pertumbuhan akar yang terhad, kekwa boleh ditanam pada kepadatan yang tinggi sehingga 99 pokok/m². Daripada analisa keuntungan bersih, kekwa ‘New White’ dan ‘New Yellow’ ditanam pada kepadatan 81 pokok/m² memberikan kepulangan yang paling tinggi.

Kajian yang terakhir mengkaji tentang pertumbuhan dan pembungaan, persepsi penanam, pengedar dan pembeli kekwa dan juga kebolehlaksanaan kewangan kekwa yang ditanam dalam sistem tray dan sistem palung. Pertumbuhan dan pembungaan kekwa dalam sistem tray hampir tidak berbeza daripada sistem palung, tetapi hasil kekwa yang ditanam dalam sistem palung adalah lebih tinggi secara nyata berbanding dengan sistem tray. Kualiti kekwa dalam hampir kesemua aspek yang dihasilkan melalui sistem tray dan sistem palung mendapat sambutan yang menggalakkan daripada penanam, pengedar dan pengguna. Melalui analisa keuntungan bersih, sistem tray berkeupayaan untuk menjana lebih banyak keuntungan berbanding sistem palung tetapi keuntungan yang dijana oleh kedua-dua sistem tersebut adalah lebih rendah berbanding sistem menggunakan media.
ACKNOWLEDGEMENTS

I would like to express my profound appreciation to the chairman of my supervisory committee, Assoc. Prof. Dr. Thohirah Lee Abdullah for her guidance, advice and support throughout the study. Sincerely thanks to my supervisory committee members, Assoc. Prof. Dr. Siti Aishah Hassan, Dr. Nitty Hirawaty Kamarulzaman and Dr.Wan Abdullah Wan Yusoff from Malaysian Agricultural Research and Development Institute (MARDI) for their guidance and assistance. I am grateful to Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) and Universiti Putra Malaysia for sponsorship.

Thanks to En. Zulkifli Mohd Saaid, En.Yazed Mahiyuddin, En.Mustafa Kamal Hanafiah, Mr. Mohd Ali Ahmad, Mr.Gopi Managarai and all staff members of MARDI Cameron Highlands, for their assistance during my field work.

I would like to express my utmost gratitude to my parents for their support and encouragement. I would like to express my appreciation to all my friends, Chen, Tan, Catherine, Sima, Zuhilmi and Wong for their help and support. Special thank are due to my Thai friend, Arporn, Natcha, Anuthida, Pornpan, Patpen, Kallika and Jatuporn.
I certify that a Thesis Examination Committee has met on 7 September 2015 to conduct the final examination of Taweesak Viyachai on his thesis entitled “Development of cut chrysanthemum (Chrysanthemum morifolium Ramat.) production in substrate culture under restricted root volume” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Adam Puteh, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd. Razi Ismail, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohd. Mansor Ismail, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Jerry Roberts, PhD
Professor
School of Biosciences
University of Nottingham
England
(External of Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Thohirah Lee Abdullah, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Siti Aishah Hassan, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Nitty Hirawaty Kamarulzaman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Wan Abdullah Wan Yusoff, PhD
Strategic resource research center
Malaysian Agricultural Research and Development Institute
(Member)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:___________________________ Date: ______________

Name and Matric No.: Taweesak Viyachai, GS30990
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Thohira Lee Abdullah, PhD

Signature: __
Name of Member of Supervisory Committee: Siti Aishah Hassan, PhD

Signature: __
Name of Member of Supervisory Committee: Nitty Hirawaty Kamarulzaman, PhD

Signature: __
Name of Member of Supervisory Committee: Wan Abdullah Wan Yusoff, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1 General information</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.2 Substrate types and plant growth</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.3 Properties of substrates and plant growth</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Physical properties of substrates</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Chemical properties of substrates</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Physical and chemical properties of coconut peat</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Physical and chemical properties of burnt rice husk</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.4 Plant growth</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Assimilate partitioning</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Morphological and physiological responses to root restriction</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Root restriction and hormone</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.4.4 Root restriction and oxygen availability</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.4.5 Root restriction and nutrient availability</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.4.6 Root restriction and flowering of plant</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.4.7 Root restriction and chrysanthemum growth</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.5 Plant responses to water availability</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.6 Plants responses to irrigation Frequency</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.7 Plant growth response to plant density</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.8 Chrysanthemum flowering and harvesting index</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.9 Economic aspect of flower production in soilless culture</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.10 Perception of consumer on hydroponic product</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.11 Characteristics of ornamental consume</td>
<td>18</td>
</tr>
</tbody>
</table>
3 | EFFECT OF SUBSTRATE VOLUMES AND SUBSTRATE TYPES ON GROWTH AND FLOWERING OF CUT CHrysANTHEMUM

3.1 Introduction
3.2 Materials and Methods
 3.2.1 Analysis of substrates
 3.2.2 Experimental site and treatments
 3.2.3 Plant growth measurements
 3.2.4 Relative water content
 3.2.5 Chlorophyll fluorescence
 3.2.6 Proline analysis
 3.2.7 Nutrient analysis
 3.2.8 Flowering measurement
 3.2.9 Experimental design and statistical analysis
3.3 Results and Discussion
 3.3.1 Physical and chemical properties of substrates
 3.3.2 Relative water content
 3.3.3 Chlorophyll fluorescence and proline content
 3.3.4 EC and pH
 3.3.5 Leaf nutrient analysis
 3.3.6 Plant growth response
 3.3.7 Dry matter partitioning
 3.3.8 Flower characteristics
3.4 Conclusion

4 | EFFECT OF IRRIGATION FREQUENCY ON THE GROWTH AND FLOWERING OF CUT CHrysANTHEMUM GROWN UNDER ROOT RESTRICTION

4.1 Introduction
4.2 Materials and Methods
 4.2.1 Experimental site and treatments
 4.2.2 Plant growth measurement
 4.2.3 Root morphology and anatomy
 4.2.4 Leaf water potential
 4.2.5 Chlorophyll content and chlorophyll fluorescence measurement
 4.2.6 Water use efficiency
 4.2.7 EC and pH
 4.2.8 Leaf nutrient analysis
 4.2.9 Flowering
 4.2.10 Experimental design and statistical analysis
4.3 Results and Discussion
 4.3.1 Leaf water potential
 4.3.2 Chlorophyll content and chlorophyll fluorescence
 4.3.3 EC and pH
 4.3.4 Leaf nutrient concentration
4.3.5 Plant growth response
4.3.6 Root morphology and anatomy
4.3.7 Fresh weight, dry matter and water use efficiency
4.3.8 Flower characteristics
4.4 Conclusion

5 EFFECT OF PLANT DENSITY ON THE GROWTH AND FLOWERING OF CUT CHRYSANTHEMUM PRODUCTION UNDER ROOT RESTRICTION
5.1 Introduction
5.2 Materials and Methods
5.2.1 Experimental site and treatments
5.2.2 Plant growth measurement
5.2.3 Leaf area index
5.2.4 Total chlorophyll content
5.2.5 Photosynthesis, chlorophyll fluorescence, water potential and proline measurement
5.2.6 EC and pH measurement
5.2.7 Leaf nutrient analysis
5.2.8 Fresh weight and dry matter
5.2.9 Flowering measurement
5.2.10 Experimental design and statistical analysis
5.2.11 Financial analysis
5.3 Results and Discussion
5.3.1 Leaf area index
5.3.2 Chlorophyll content
5.3.3 Photosynthesis, chlorophyll fluorescence, proline content and water potential
5.3.4 EC and pH
5.3.5 Leaf nutrient analysis
5.3.6 Plant growth responses
5.3.7 Fresh weight and dry matter
5.3.8 Flower characteristics
5.3.9 Financial analysis
5.4 Conclusion

6 GROWTH, PERCEPTION ON QUALITY AND FINANCIAL ANALYSIS OF CUT CHRYSANTHEMUM PRODUCTION IN TWO SUBSTRATE CULTURE SYSTEMS
6.1 Introduction
6.2 Materials and Methods
6.2.1 Experimental site and treatments
6.2.2 Plant growth measurement
6.2.3 Chlorophyll content, chlorophyll fluorescence, and proline content
6.2.4 Leaf nutrient analysis
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Physical and chemical properties of coconut peat, burnt rice husk and coconut peat mixed with burnt rice husk</td>
</tr>
<tr>
<td>3.2</td>
<td>Effects of substrate volumes and substrate types on average Fv/Fm and proline level of chrysanthemum</td>
</tr>
<tr>
<td>3.3</td>
<td>Effects of substrate volumes (34 cm³, 73 cm³, 140 cm³) and substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on nutrient concentration in leaves of chrysanthemum at fourteenth week after transplanting</td>
</tr>
<tr>
<td>3.4</td>
<td>Effects of substrate volumes (34 cm³, 73 cm³, 140 cm³) and substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on plant height, stem diameter, leaf area, and root surface area of chrysanthemum</td>
</tr>
<tr>
<td>3.5</td>
<td>Effects of substrate volumes (34 cm³, 73 cm³, 140 cm³) and substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on dry weight, dry matter partitioning and root:shoot ratio of chrysanthemum</td>
</tr>
<tr>
<td>3.6</td>
<td>Effects of substrate volumes and substrate types on stem fresh weight, number of flowers, number of petals and flower diameter of chrysanthemum</td>
</tr>
<tr>
<td>3.7</td>
<td>Effects of substrate volumes and substrate types on flower color, vase life and yield of chrysanthemum</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of substrate volumes (73 cm³ and 140 cm³) and irrigation frequencies (4, 6, 8 times/day) on average chlorophyll fluorescence and chlorophyll content</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of substrate volumes (73 cm³ and 140 cm³) and irrigation frequencies (4, 6, 8 times/day) on nutrient levels in leaves of chrysanthemum at sixth week after transplanting</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of substrate volumes (73 cm³ and 140 cm³) and irrigation frequencies (4, 6, 8 times/day) on nutrient levels in leaves of chrysanthemum at fourteenth week after transplanting</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of substrate volumes (73 cm³ and 140 cm³) and irrigation frequencies (4, 6, 8 times/day) on plant height, stem diameter and number of internodes of chrysanthemum</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of substrate volumes and irrigation frequencies on leaf area, number of leaf, leaf length and leaf width of chrysanthemum</td>
</tr>
<tr>
<td>4.6</td>
<td>Effects of substrate volumes (73 cm³ and 140 cm³) and irrigation frequencies (4, 6, 8 times/day) on root surface area, root diameter, epidermis thickness, cortex width and stele diameter</td>
</tr>
</tbody>
</table>
4.7 Effect of substrate volumes (73 cm3 and 140 cm3) on dry weight and dry matter partitioning of chrysanthemum
4.8 Effect of substrate volumes (73 cm3 and 140 cm3) and irrigation frequencies (4, 6, 8 times/day) on chrysanthemum flower characteristics
4.9 Effect of substrate volumes and irrigation frequencies on color and vase life of chrysanthemum flower
5.1 Effects of varieties and plant densities on photosynthesis rate, stomatal conductance, transpiration rate, and water use efficiency of chrysanthemum at sixth week after transplanting
5.2 Effects of varieties and plant densities on photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of chrysanthemum at fourteenth week after transplanting
5.3 Effects of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on Fv/Fm, proline and water potential of chrysanthemum at sixth weeks after transplanting
5.4 Effects of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on Fv/Fm, proline and water potential of chrysanthemum at fourteenth weeks after transplanting
5.5 Effects of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on nutrient concentrations in leaves of chrysanthemum at sixth week after transplanting
5.6 Effects of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on nutrient concentrations in leaves of chrysanthemum at fourteenth week after transplanting
5.7 Effects of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on plant height, number of internodes, stem diameter and pedicle length of chrysanthemum grown under restricted root volume
5.8 Effects of varieties and plant densities on number of leaves, leaf area, leaf length, root surface area and root:shoot ratio of chrysanthemum grown under restricted root volume
5.9 Effects of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on fresh weight, dry weight and dry matter partitioning of chrysanthemum grown under restricted root volume
5.10 Effects of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on day to flowering, number of flowers, flower diameter, inflorescence diameter of chrysanthemum
5.11 Effects of varieties and plant densities on color, vase life and yield of chrysanthemum
5.12 Estimate total yield and annual sale of chrysanthemum production in substrate culture at different plant densities
5.13 Initial investment of chrysanthemum ‘New White’ and ‘New Yellow’ grown at different plant density
5.14 Cost of operation of chrysanthemum ‘New White’ and ‘New Yellow’ grown at different plant density
5.15 Gross profit margin of chrysanthemum two varieties (New White and New Yellow) grown in substrate culture at different plant densities (64, 81 and 99 plants/m²)
6.1 Chlorophyll fluorescence efficiency (Fv/Fm), proline content, and total chlorophyll of chrysanthemums grown in the tray and the trough systems
6.2 Leaf nutrient concentration of chrysanthemums at the sixth week after transplanting
6.3 Leaf nutrient concentration of chrysanthemums at the fourteenth week after transplanting
6.4 Plant growth response of chrysanthemums grown in tray and trough systems
6.5 Fresh weight, dry weight and dry matter partitioning of chrysanthemums grown in tray and trough systems
6.6 Flowering and flower characteristics of chrysanthemums grown in tray and trough systems
6.7 Flower color, vase life, and yield of chrysanthemums grown in tray and trough systems
6.8 Profiles of growers
6.9 Grower’s problems on growing chrysanthemums
6.10 Attitude among growers towards soilless culture
6.11 Concern among growers over soilless culture
6.12 Perceptions of growers towards chrysanthemum quality
6.13 Preferences of growers on different soilless growing systems
6.14 Profiles of chrysanthemum distributors
6.15 Perceptions of distributors towards chrysanthemum quality
6.16 Willingness to buy chrysanthemums among distributors
6.17 Price of chrysanthemum from different distributors
6.18 Concerns of distributors for buying chrysanthemums
6.19 Socio-demographic profiles of consumers
6.20 Chrysanthemum purchasing behavior of the consumers
6.21 Perceptions among consumers towards chrysanthemum quality
6.22 Willingness among consumers to buy chrysanthemums
6.23 Expected price of chrysanthemums
6.24 Concern among consumers when buying chrysanthemums
6.25 Estimate total yield and annual sales of chrysanthemum production in soil-based system, the tray system and the trough system
6.26 Initial investment of chrysanthemum production in soil-based system, the tray system and the trough system
6.27 Cost of operations for chrysanthemums grown in the tray and the trough systems
6.28 Gross profit of chrysanthemums grown in soil-based system, the tray and the trough system
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>32</td>
</tr>
<tr>
<td>3.9</td>
<td>32</td>
</tr>
<tr>
<td>3.10</td>
<td>34</td>
</tr>
<tr>
<td>3.11</td>
<td>34</td>
</tr>
<tr>
<td>3.12</td>
<td>35</td>
</tr>
<tr>
<td>3.13</td>
<td>37</td>
</tr>
<tr>
<td>3.14</td>
<td>38</td>
</tr>
</tbody>
</table>

- **Figure 3.1**: Chrysanthemum cv. Reagan White grown in seedling tray volume 34, 73, 140 cm³
- **Figure 3.2**: Effects of different substrate volumes (34 cm³, 73 cm³, 140 cm³) on relative water content of chrysanthemum grown under restricted volume (mean±SE, n=12)
- **Figure 3.3**: Effects of different substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on relative water content of chrysanthemum grown under restricted volume (mean±SE, n=12)
- **Figure 3.4**: Effect of different substrate volumes (34 cm³, 73 cm³, 140 cm³) on electrical conductivity in the root environment of chrysanthemum (mean±SE, n=12)
- **Figure 3.5**: Effect of different substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on electrical conductivity in the root environment of chrysanthemum (mean±SE, n=12)
- **Figure 3.6**: Effect of different substrate volumes (34 cm³, 73 cm³, 140 cm³) on the pH of the root environment of chrysanthemum (mean±SE, n=12)
- **Figure 3.7**: Effect of different substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on the pH of the root environment of chrysanthemum (mean±SE, n=12)
- **Figure 3.8**: Effect of different substrate volumes (34 cm³, 73 cm³, 140 cm³) on plant height of chrysanthemum. (mean±SE, n=12)
- **Figure 3.9**: Effect of different substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on plant height of chrysanthemum. (mean±SE, n=12)
- **Figure 3.10**: Effect of different substrate volumes (34 cm³, 73 cm³, 140 cm³) on total leaf area of chrysanthemum. (mean±SE, n=12)
- **Figure 3.11**: Effect of different substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on total leaf area of chrysanthemum. (mean±SE, n=12)
- **Figure 3.12**: Effect of substrate volumes (34 cm³, 73 cm³, 140 cm³) and substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on stem diameter of chrysanthemum
- **Figure 3.13**: Interaction effects of substrate volumes (34 cm³, 73 cm³, 140 cm³) and substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on stem dry weight of chrysanthemum
- **Figure 3.14**: Interactive effects of substrate volumes (34 cm³, 73 cm³, 140 cm³) and substrate types (coconut peat, burnt rice husk, coconut peat+burnt rice husk) on total dry weight of chrysanthemum
4.1 Chrysanthemum cv. Reagan White grown in seedling tray volume 73 and 140 cm3

4.2 Effects of substrate volumes (73 cm3 and 140 cm3) on leaf water potential of chrysanthemum grown under restricted root volume. (mean±SE, n=8)

4.3 Effects of irrigation frequencies (4, 6, 8 times/day) on leaf water potential of chrysanthemum grown under restricted root volume. (mean±SE, n=8)

4.4 Effect of substrate volume (73 cm3 and 140 cm3) on electrical conductivity of the root zone of chrysanthemum. (mean±SE, n=8)

4.5 Effect of irrigation frequency (4, 6, 8 times/day) on electrical conductivity of the root zone of chrysanthemum. (mean±SE, n=8)

4.6 Effect of substrate volume (73 cm3 and 140 cm3) on pH at the root environment of chrysanthemum. (mean±SE, n=8)

4.7 Effect of irrigation frequency (4, 6, 8 times/day) on pH of the root environment of chrysanthemum. (mean±SE, n=8)

4.8 Effects of irrigation frequencies (4, 6, 8 times/day) and substrate volumes (73 cm3 and 140 cm3) on potassium levels in leaves of chrysanthemum at sixth week. (mean±SE, n=8)

4.9 Effects of irrigation frequencies (4, 6, 8 times/day) and substrate volumes (73 cm3 and 140 cm3) on nitrogen levels in leaves of chrysanthemum at fourteenth week. (mean±SE, n=8)

4.10 Effects of substrate volumes (73 cm3 and 140 cm3) on plant height of chrysanthemum. (mean±SE, n=8)

4.11 Effects of irrigation frequencies (4, 6, 8 times/day) on plant height of chrysanthemum. (mean±SE, n=8)

4.12 Interactive effect of irrigation frequency (4, 6, 8 times/day) and substrate volume (73 cm3 and 140 cm3) on plant height of chrysanthemum (mean±SE, n=8)

4.13 Effects of substrate volumes (73 cm3 and 140 cm3) on plant height of chrysanthemum. (mean±SE, n=8)

4.14 Effects of irrigation frequencies (4, 6, 8 times/day) on plant height of chrysanthemum. (mean±SE, n=8)

4.15 Root anatomy of chrysanthemum grown under different substrate volumes and irrigation frequencies (a=73cm3/4 times, b=73cm3/6 times, c=73cm3/8 times, d=140cm3/4 times, e=140cm3/6 times, f=140cm3/8 times) (Ep=epidermis, St=stele, Co=cortex). Bar=20 µm

4.16 Interactive effect of irrigation frequency (4, 6, 8 times/day) and substrate volume (73 cm3 and 140 cm3) on water use efficiency of chrysanthemum (mean±SE, n=8)

5.1 Leaf area index of chrysanthemum influenced by varieties (New White and New Yellow). (mean±SE, n=8)

5.2 Leaf area index of chrysanthemum influenced by plant densities (64, 81 and 99 plants/m2). (mean±SE, n=8)
5.3 Effect of varieties (New White and New Yellow) on total chlorophyll (mg cm$^{-2}$) in leaf of chrysanthemum. (means±SE, n=8)

5.4 Effect of plant densities (64, 81 and 99 plants/m2) on total chlorophyll (mg cm$^{-2}$) in leaf of chrysanthemum. (means±SE, n=8)

5.5 Effect of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on photosynthesis of chrysanthemum grown under restricted root volume. (means±SE, n=8)

5.6 Effect of variety (New White and New Yellow) on electric conductivity at the root environment of chrysanthemum. (means±SE, n=8)

5.7 Effect of plant density (64, 81 and 99 plants/m2) on electrical conductivity at the root environment of chrysanthemum. (means±SE, n=8)

5.8 Effect of variety (New White and New Yellow) on pH at the root environment of chrysanthemum (means±SE, n=8)

5.9 Effect of plant density (64, 81 and 99 plants/m2) on pH at the root environment of chrysanthemum. (means±SE, n=8)

5.10 Effect of variety (New White and New Yellow) on plant height of chrysanthemum. (means±SE, n=8)

5.11 Effect of plant density (64, 81 and 99 plants/m2) on plant height of chrysanthemum. (means±SE, n=8)

5.12 Effect of variety (New White and New Yellow) on total leaf area of chrysanthemum. (means±SE, n=8)

5.13 Effect of plant density (64, 81 and 99 plants/m2) on total leaf area of chrysanthemum. (means±SE, n=8)

5.14 Effect of varieties (New White and New Yellow) and plant densities (64, 81 and 99 plants/m2) on number of leaf of chrysanthemum grown under restricted root volume. (means±SE, n=8)

6.1 Chrysanthemums cv. New Yellow grown in the trough and the tray system

6.2 Effect of growing system on EC at the root environment of chrysanthemum (n=8)

6.3 Effect of growing system on pH at the root environment of chrysanthemum (n=8)

6.4 Effect of growing system on plant height of chrysanthemum (mean±SE, n=8)

6.5 Effect of growing system on total leaf area of chrysanthemum (mean±SE, n=8)
LIST OF ABBREVIATIONS

% Percentage
°C Degree celsius
ANOVA Analysis of variance
B Boron
bar Bar
C Carbon
Ca Calcium
Chl Chlorophyll
cm Centimeter
cm² Square centimeter
C/N Carbon/Nitrogen
CRD Completely Randomize Design
Cu Copper
cv. Cultivar
d Day
e.g. For example
EC Electrical conductivity
et al. And friends
etc. et cetera
FAA Formalin Acetic Acid
Fe Iron
g gram
h Hour
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascal</td>
</tr>
<tr>
<td>l</td>
<td>Litre</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agricultural Research and Development Insititue</td>
</tr>
<tr>
<td>m²</td>
<td>Square meter</td>
</tr>
<tr>
<td>mg cm⁻²</td>
<td>Milligram per square centimeter</td>
</tr>
<tr>
<td>mg L⁻¹</td>
<td>Milligram per litre</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mol</td>
<td>Mole</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µmol</td>
<td>Micromole</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Paskal</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>mS/cm</td>
<td>Milli-Siemens per centimeter</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>ns</td>
<td>Not significant</td>
</tr>
<tr>
<td>p</td>
<td>Probability</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>pb</td>
<td>Bulk density</td>
</tr>
<tr>
<td>pH</td>
<td>Measurement of Acidity/Alkalinity</td>
</tr>
</tbody>
</table>
RCBD Randomized Complete Block Design
RM Ringgit Malaysia
RWC Relative Water Content
s Second
SD Standard deviation
USA United States of America
Zn Zinc
CHAPTER 1

INTRODUCTION

Chrysanthemum is a popular cut flower which is produced worldwide. The cultivation of cut chrysanthemum around the world is still mainly in soil (Blok and Vermeulen, 2012). Many flowers such as rose, gerbera, anthurium and cymbidium have changed to soilless cultivation (Erik et al. 2008). Several countries such as Holland and Israel have widely cultivated cut flower in soilless substrate for many years (Marta, 2001). Many countries such as Brazil, Canada, Europe, Morocco, Tanzania, USA and Colombia have used substrate culture for flower production to reduce the environmental problems from soil treatment by methyl bromide (Marta, 2012). Soilless culture system can improve the yield and quality of crop plants even in non-arable areas (Gruda, 2009). Soilless culture was a choice for flower production because it can avoid soil-borne pests and diseases that became hard to control. Soil problems such as soil degradation, soil contamination and poor soil structure were also difficult to manage in floriculture (Marta, 2007). Lim et al. (1998) reported that accumulation of nematodes and soil-born diseases were a problem for cut flower production which were produced in the same area continuously.

Chrysanthemum production in soilless culture system has been studied and developed for more than 30 years. In 1980, Van Os developed a nutrient film system for growing chrysanthemum. Production of chrysanthemum in nutrient film systems can increase yield up to 24% when compared with soil culture (de Visser and Hendrix, 1986). Buwalda et al. (1994) reported that chrysanthemum grown in ebb and flow system had higher productivity than soil cultivation. Growing chrysanthemum also was tested in aeroponics system (de Kreij and Paternotte, 1999). Some systems showed disadvantages such as deep flow technique which produced shorter and weaker stem than soil (Sakamoto et al. 2001). However, chrysanthemums grown in solution system were prone to infection by Pythium (Lipty and TU, 2003). Even, the use of ultra violet treatment cannot decrease Pythium root rot (Liu et al. 2007). Chrysanthemums grown hydroponically had severe root rot problem and this inhibited chrysanthemum production in hydroponic systems (Sutton et al. 2006)

Substrate culture was another area of interest for producing chrysanthemum. Coarse grade peat can be use as a substrate for cultivate chrysanthemum all year round (Verhagen, 1993). High quality chrysanthemums can be produced with expanded clay, perlite, pumice and pumice mixed with peat in bag culture without any physiological disorder (Marlogio et al.1994). Wilson and Finlay (1995) reported that chrysanthemums can be produced in a sand-based system with higher stem length and heavier stem than soil grown without any sterilization for seven
crop cycles. Wrigth et al. (2008) found that pine tree substrate can be used for chrysanthemum production in a greenhouse as a peat-lite medium.

Even though, substrate cultures seem to be a possible way for growing chrysanthemums with less problems on root disease, but the disadvantage of this system was the high production cost due to high expense for replacing substrate (Buwalda et al. 1994). Blok and Vermeulen (2012) developed substrate systems for growing chrysanthemum such as a sand base system, peat base system and cassette base system to compare with soil grown. They found that all systems were unprofitable. Growing chrysanthemums with the optimum substrate may have the potential to obtain economic production and could be an alternative to solve soil degradation and soil-born diseases. However, the use of small container will increase root restricted condition experienced by the plants. Reduce rooting volume caused many physiological and morphological change (NeSmith and Duval, 1998). Altering amount in a substrate will change root performance through influencing plant growth (Young et al. 2014). Beside, plants grown in small volume are very sensitive to the variation on the moisture and nutrient level in the root zone, which can affect growth performance and quality of plants (Xianfeng et al. 2010).

This study will conduct to investigate the growth and flowering of chrysanthemum under root restricted conditions in association with the financial analysis of chrysanthemum production in the developed system. The objectives of this study were:

1. To determine the effects of substrate types and substrate volumes on the growth and flowering of chrysanthemum.
2. To determine the effects of irrigation frequencies on the growth and flowering of chrysanthemum grown under restricted root volume.
3. To determine the effects of plant density on the growth and flowering of chrysanthemum grown under restricted root volume.
4. To survey the perception of growers, distributors and consumers on the flower quality of chrysanthemum grown under restricted root volume, and the economic possibility of chrysanthemum production.
REFERENCES

Department of Standards Malaysia. 2012. Fresh cut chrysanthemum – specification (First revision). Cyberjaya: Department of Standards Malaysia.

Marta, P. 2012. Soilless production of cut flowers continues to increase. Floraculture International 3: 14-16

138

