

UNIVERSITI PUTRA MALAYSIA

MONITORING AND CONTROLLING OF MOBILE HARVESTING ROBOT THROUGH WIRELESS LAN

LIM YU JIAN.

FK 2004 31

MONITORING AND CONTROLLING OF MOBILE HARVESTING ROBOT THROUGH WIRELESS LAN

By

LIM YU JIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2004

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

MONITORING AND CONTROLLING OF MOBILE HARVESTING ROBOT THROUGH WIRELESS LAN

By

LIM YU JIAN

April 2004

Chairman : Professor Ir. Wan Ishak Wan Ismail, Ph.D.

Faculty : Engineering

This research project presents a modification of a mobile harvesting robot for communication of human operator with the machine through wireless LAN networking. The adopted harvesting strategy relies on an operator to guide the vehicle through viewing real time video of the workspace to locate the fruit, while the robotic system plans the cutting sequence and makes the approximation for detaching of the fruit. This new strategy will reduce the overall cutting cycle by avoiding the time taken for detection and location of the fruit.

A software program was developed using Visual Basic for the operator to monitor and control the mobile harvesting movement remotely. Java Applet has been integrated into this software to continuously transmit the images from the CMOS web camera to the human operator in real time.

The operator communicates with the robot server through a pair of radio Ethernet devices. The location of fruit and position of the mobile robotic can be easily

retrieved and sent over the wireless TCP/IP protocol. This research has defined the X-axis as the horizontal axis of the target, Y-axis as the distance of target from the mobile harvester and the Z-axis as the vertical axis of the target. All the X, Y and Z – axis coordinates of the targeted fruit can be determined by the triangulation computation method using the video base positioning technique.

To move the mobile harvesting robot to the X, Y and Z coordinates of the target, modification has been done including the attachment of few sensors to the mobile harvesting robot. The input signal to the robot controller commands it to move and stop the robot at the X, Y and Z coordinates precisely.

Abstrak tesis yang di kemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SISTEM KOMUNIKASI LAN TANPA WAYAR BAGI ROBOT PENUAI

Oleh

LIM YU JIAN

April 2004

Pengerusi : Professor Ir. Wan Ishak Wan Ismail, Ph.D.

Fakulti : Kejuruteraan

Kajiaan ini mempersembahkan pengubahsuain robot penuai untuk sistem komunikasi antara operator dan mesin melalui jaringan LAN tanpa wayar. Strategi penuaian cara ini membolehkan operator memandu robot penuai ke kawasan tuaian dengan panduan siaran video secara langsung bagi mengesan buah. Justeru robot penuai berhenti, operator dapat memastikan buah untuk dituai, manakala robot penuai akan mengira jarak dan lokasi buah pilihan bagi penuain secara automatik. Strategi ini dapat mengurangkan masa penuaian bagi robot untuk mengenalpasti buah pilihan untuk dituai.

Satu pengaturcaraan perisian dibangunkan dengan menggunakan perisian "Visual Basic" bagi tujuan operator mengawal dan meneliti pergerakan robot penuai secara kawalan jarak jauh. "Java Applet" di intergrasikan kedalam perisian ini bagi menghasilkan video secara langsung dari kamera "Web"

Operator berkomunikasi dengan server robot melalui sepasang alatan radio Ethernet. Maklumat mengenai kedudukan buah dan posisi robot penuai dapat di hantar dan diterima melalui protokal TCP/IP tanpa wayar. Dalam penyelidikan ini kami telah mengenal pasti paksi X sebagai jarak mendatar buah dari robot penuai, paksi Y sebagai jarak buah dari robot penuai dan paksi Z sebagai jarak menegak buah dari robot penuai. Kesemua kordinat paksi X,Y dan Z bagi buah dapat di tentukan dengan menggunakan cara "Triangulation Computation" yang mengunakan teknik posisi video.

Bagi menggerakan robot penuai ke kordinasi X,Y dan Z buah, pengubahsuai dan penyambungkan penderia kepada robot penuai telah dilaksanakan. Sistem penderia dapat memberi maklumat kepada perisian kawalan robot yang menggerak dan memberhentikan robot pada kordinat X,Y dan Z secara tepat.

ACKNOWLEDGEMENTS

People do believe in the saying that there is no short cut in life and only hard work pays. The sweat and time taken in completing this research proves something are worth working hard for but at times reliance for some assistance along the journey of this research is invaluable.

First and foremost, a whole-hearted appreciation and gratitude to my supervisor. Prof Ir. Dr. Wan Ishak Wan Ismail for his patient guidance, advice, teaching, assistance and encouragement throughout this research project. An expression of gratitude to my examiners. Associate Prof Dr. Azmi Yahya and Dr. Napsiah Ismail for their valuable comments and suggestions.

Special thanks to Mr. Zakaria Ismail, Mr. Razak Mohd Yusoh, Mr. Zainal Abidin Abdul Ghani and all the staff in the Engineering workshop who has earnestly and cordially imparted all technical expertise to me and my course mates Mr. Mohd Saufi Kassim and Mohd. Hudzari Bin Razali who have shown endeavors, perseverance and strived hard to complete this research together.

C

All of the good things that have happened in my life can in some way be attributed to the love, support, and encouragement my Mom and Dad have given me and the sacrifices they have made for me. Thank you Mei Yee, for the unconditional love and support she has given me. She has always provided needed sacrifices for the completion of this master degree.

Last but not least, thanks to God for watching over me, for all my family and friends, for my Mom and Dad. There's always a feeling that my life has been blessed.

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	viii
DECLARATION	х
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF PICTURES	xvi

CHAPTER

1	INT	RODUCTION	1
	1.1	The Aim	9
	1.2	Objective	10
2	LIT	ERATURE REVIEW	12
	2.1	Wireless Local Area Network (LAN)	14
		2.1.1 Wireless LAN Topology	14
		2.1.2 Roaming	15
		2.1.3 Media Access	16
		2.1.4 Collision Avoidance	16
		2.1.5 Wireless Network Implementation Strategies	17
		2.1.6 Spread Spectrum RF	17
		2.1.7 Infrared	19
	2.2	World Wide Web (WWW)	20
	2.3	Australia's Tele-Robot On The Web	22
	2.4	Tele-Garden	23
	2.5	KEHP-On The-Web" Tele-Robotics	26
		2.5.1 Khepera: a miniature mobile robot	26
	2.6	Xavier An Autonomous Mobile Robot On The Web	28
	2.7	Cucumber Harvesting Robot	30
	2.8	Tomato Harvesting Robot	31

3

METHODOLOGY 3.1

MET	HOD	DLOGY	34
3.1	System	n Architecture	35
	3.1.1	System Architecture of the Robust Programming	36
	3.1.2	System Architecture of the Robust Hardware	37
	3.1.3	System requirements	39
3.2	Syster	n Hardware	40
	3.2.1	Computing Resources	40
	3.2.2	Vision Systems	42
	3.2.3	Wireless LAN Device	44

Page

	APPI	ERENCES ENDIX DATA OF THE AUTHOR	85 87 89
5	CON 5.1	CLUSION AND RECOMMENDATION Future Work	81 83
	4.14	Harvesting Test in Lab Scale	79
	4.13	Y-Position Automation Movement	78
	4.12	Z-Position Automation Movement	78
		X-Position Automation Movement	76
	4.10	Automated Harvesting	75
	4.9	Localization	75
	4.8	Remote Control Wireless LAN	74
	4.7	Real Time Video Interface	73
	4.6	Overall Wireless Lan-Base Control System	72
	4.5	Interface Reliability	72
	4.4	Robot Controller System Reliability	71
	4.3	Failure Analysis	70
	4.2	System Tests	69
	4.1	Experimental Results	68
4	RES	ULT AND DISCUSSION	68
	3.5	Operator Control System	65
		3.4.3.2 Input	63
		3.4.3.1 Output	63
		3.4.3 The robot Control System	62
		3.4.2 Robot Vision System	60
	5.7	3.4.1 Wireless LAN Communication	59
	3.4	Implementation	58
		3.3.8 Visual Basic Programming	58
		3.3.7 7000 UTILITY 3.3.7.1 NAP 7000X	56 57
		3.3.6 Robot Controller Software	55
		3.3.5 Operators monitor & control software	54
		3.3.4 Localization - Triangulation computation	54
		3.3.3 Applet Client	54
		3.3.2 Webcam32 TCP/IP Capturing Software	53
		3.3.1 TCP/IP UI User Interface	52
	3.3	Software	52
		3.2.6 ICP I/O Modules	50
		3.2.5 Pneumatic Robot Arm	49
		3.2.4 Research Platform	47
		3.2.3.2 Station-Adapters (SA)	46
		3.2.3.1 Access Points (AP)	44

 \bigcirc

.

LIST OF TABLES

Table		Page
1.1	Malaysian gross domestic product by industry, 1998-2002	2
1.2	Employment and Productivity in agriculture, 1995-2005	4
4.1	Description of the function key movement.	74
4.2	Cutting Experiment Result	79
4.3	Average Time of Cutting Operation	79

G

LIST OF FIGURES

Figure		Page
2.1	Basic wireless LAN cell	15
2.2	Spread Spectrum Signals	18
2.3	Direct Sequence Spread Spectrum	19
2.4	Frequency Hopping Spread Spectrum	20
3.1	Software Architecture	36
3.2	Hardware Architecture	38
3.3	Diagram of the Output Control System	64
3.4	Sensor modified as the Feedback for the Input System	66
4.1	Three stages of performing test	69
4.2	Mathematical Formula	77

6

LIST OF PICTURES

Picture		Page
1.1	Concept of mobile harvesting robot through wireless LAN	9
2.1	Australia's Tele-Robot On The Web	22
2.2	Tele-Garden	24
2.3	Khepera equipped with a video camera	27
2.4	Xavier	29
2.5	Cucumber Harvesting Robot	31
2.6	Tomato Harvesting Robot	32
3.1	Target T2200D Notebook	41
3.2	Acer Travel Mate Notebook	42
3.3	FlyCam-USB 300 CMOS Web Camera	43
3.4	BreezeNet Access Point	45
3.5	BreezeNet Station Adaptor	46
3.6	Kubota L 3010 As Research Platform	48
3.7	Pneumatic Robot Arm	49
3.8	ICP CON Module 7042 Output module	51
3.9	ICP CON I-7053 Output Module	51
3.10	ICP CON I- 7520 Converter	52
3.11	Main Window of 7000 Utility	56
3.12	Window to select the NAP7000X	57
3.13	Access Point Mounted On The Tractor	59
3.14	FlyCam USB Web Camera Mounted on the Tractor	61
3.15	Image of the video system	61
3.16	ICP CON Mounted on The Tractor	62
3.17	The Operator Control System	67
4.1	The Mobile Harvesting Robot	69
4.2	Operator Monitor & Control Software with the real time video	73
4.3	Result of the Target Localization	76

6

CHAPTER 1

INTRODUCTION

There has been substantial increase in agricultural production in Asia and Pacific over the last two decades. This increase has been primarily due to the improvements in various farming techniques with increased results and reliable support services. Farm-level infrastructures such as irrigation, drainage, farm roads and computer technology have also contributed to this success. The level of infrastructure support has improved over the years as adoption of more sophisticated cropping systems increased. Modern agricultural practices are possible by the provision and improvement of this basic agricultural infrastructure. The use of high yielding variety seeds, increased fertilizer application rates and increased farm automation, also contributed to the increase in agricultural production.

The agricultural sector in Malaysia continues to play a major role in contributing towards national development. In addition to contributing to GDP, employment and export earnings, the sector provides raw materials to domestic agro-based industries as well as food for the population. At the same time, this sector is continuing its move towards conserving the ecology and environment as well as ensuring sustainable development. With rapid economic transformation towards industrialization, the sector's share of GDP increased from –2.8 per cent in 1998 to 0.6 per cent in 2000 and then declined from 2.5 per cent in 2001 to 1.0 per cent in 2002, as shown in Table 1.1.

Table 1.1 - Malaysian gross domestic product by industry, 1998 - 2002

GROSS DOMESTIC PRODUCT

	1998		199	99	200	00	2001		2002	
	RM	%	RM	%	RM	%	RM	%	RM	%
	million	growth	million	growth	million	growth	million	growth	million	growth
Supply (at constant 1987 prices)										
Agriculture, forestry & fishing	17,5 <mark>1</mark> 2	-2.8	17,575	0.4	17,687	0.6	18,129	2.5	18,315	1.0
Mining and quarrying	14,357	0.4	13,977	-2.6	14,416	3.1	14,444	0.2	14,883	3.0
Manufacturing	50,900	-13.4	57,761	13.5	69,867	31.0	66,271	-5.1	69,052	4.2
Construction	7,241	-24.0	6,926	-4.4	6,996	1.0	7,159	2.3	7,332	2.4
Services	101,753	-0.4	106,654	4.8	111,747	4.8	117,218	4.9	121,656	3.8
Electricity, gas & water	6,745	11.1	7,334	8.7	7,886	7.5	8,330	6.6	8,868	6.5
Transport, Storage & communications	14,720	-0.3	15,557	6.7	16,694	7.3	17,567	5.2	18,435	5.0
Wholesale & retail trade hotel & restaurant	28,489	-3.4	29,240	2.6	30,949	5.8	31,956	3.3	32,935	3.1
Finance, real estate & businese services	23,563	-1.9	24,895	5.6	26,161	5.1	38,066	7.3	29,052	3.6
Government services	13,180	1.1	14,195	7.7	14,395	1.4	15,178	5.4	15,785	4.0
Other services	15,036	1.9	15,433	2.6	15,662	1.5	16,121	2.9	16,544	2.6
Less : Imputed bank service charges	13,956	1.4	14,896	6.7	16,090	8.0	17,727	10.2	18,573	4.8
Plus : Import duties	4,430	-42.4	5,319	20.1	4,742	-10.9	4,693	-1.0	4,789	2.0
GDP at purchasers' value	182,237	-7.4	193,317	6.1	209,365	8.3	210,188	0.4	217,453	3.5
Demand (at constant 1987 prices)										
Private consumption	82,031	-10.2	84,719	3.3	95,086	12.2	97,779	2.8	142,668	5.0
Private investment	31,973	-55.2	24,995	-21.8	32,166	38.7	25,818	-19.7	26,137	1.2
Public consumption	20,059	-8.9	23,776	18.5	24,185	1.7	27,059	11.9	28,172	4.1
Public investment	23,204	-8.4	26,902	15.9	32,249	19.9	37,232	15.5	36,117	-3.0
Exports of goods and non-factor services	187,415	0.5	212,484	13.4	246,773	16.1	228,141	-7.6	236,571	3.7
Imports of goods and non-factor services	162,212	-18.8	179,778	10.6	223,294	24.2	204,129	-8.6	212,710	4.2
GNP at purchasers' value	172,786	-5.2	179,688	4.0	190,324	5.9	192,352	1.1	198,272	3.1

Source : Eight Malaysia Plan

Nevertheless, in absolute terms, the total value added of the sector continued to increase significantly from RM 17,512 million in 1998 to RM 18,315 million in 2002.

Employment in the agriculture sector decreased further during the plan period, from 1.5 million in 1995 to 1.4 million in 2000, a average decline of 1.2 per cent per annum, as shown in Table 2.1. Productivity gains were recorded in several sub sectors, particularly padi, tobacco, vegetables and poultry, through the application of various labor-saving technologies and better farming practices in large-scale commercial production. Value added per worker in the agriculture sector improved further by 2.4 per cent per annum, from about RM11, 500 in 1995 to about RM12, 900 in 2000. This was slightly lower than the Plan target of 3.3 per cent per annum due to the relatively slow process of mechanization in several sub sectors such as oil palm, rubber and cocoa (Eight Malaysia Plan, 2001).

Table 1.2 -	Employment and	productivity in agricultu	re, 1995 - 2005
-------------	-----------------------	---------------------------	-----------------

	Average Annual Growth Rate (
				7MP	7MP	8MP	
	1995	2000	2005	Target	Achieved	Target	
Employment in Agriculture ('000)	1,493	1,408	1,307	-3.6	-1.2	-1.5	
Percent to Total Employment	18.7	15.2	12.0				
Value Added Per woker (RM in 1987 prices)	11,466	12,898	16,088	3.3	2.4	4.5	

EMPLOYMENT AND PRODUCTIVITY IN AGRICULTURE

Source : Eight Malaysia Plan

During the Eighth Malaysia Plan period, new and innovative measures has been undertaken to increase the contribution of the agriculture sector to the national economy. Domestic food production will be further enhanced by encouraging largescale and organized farming, intensifying land use, improving agronomic practices as well as using modern technologies and management. Production of primary commodities will be reoriented to improve productivity and competitiveness through an integration program with livestock, wider crop mix practices and mechanization. In addition, production of specialty natural products such as medicinal plants as well as non-wood forest products will be promoted as new sources of growth.

The application of machines to agricultural production has been an outstanding development in Malaysian Agriculture. To ensure that Malaysia's agriculture cultivation continues to stay attractive in the growing commodity market, extensive research and development effort are being carried out to increase production, overcome labor shortage and to develop new technology for the industry.

Automation system, artificial intelligence and bio-production robots are among the new technologies that must be introduced in the agriculture industries. By using a super-computer it is possible to integrate satellite information for future application to the agriculture cultivation industries.

C

Industrial background has been traditionally the application field for robotics. Robots perform well in structured environments where working positions as well as obstacles are somehow predictable. Robotics' application field is spreading to reach

non-traditional areas like medical robots, agricultural and post -harvesting robots and so forth. Critical aspects of these new applications are robot-environment interaction and robust sensing in an outdoors and aggressive background, and as a consequence new overall designs are required.

Agricultural tasks have been an important application area for different kinds of technologies to improve crop production, farms and their related operations. In this century, the achieved progress has reduced the manpower devoted to these activities in the developed countries by a ratio of 1/80. (Pons et al, 1996). One of the most significant contributions is due to machinery developments and the corresponding automation techniques for a wide set of tasks: soil and farm treatments, sowing, harvesting and post-harvest processing, management, etc.

Nevertheless, agricultural workplaces are a clear example of unstructured environments, mainly owing to the innumerable forms and topologies of fields, plants and products. This fact makes it very difficult to implement fully automated solutions for mobile harvesting robot, and thus this is one of the non-mechanized and most expensive tasks for a variety of fruits including oil palm, cocoa and similar fruit groves. Robotics approaches have been applied since the late 1970s with more and more advanced devices and strategies.

C

The recent growth of the World Wide Web provides unique opportunities to bring robots closer to people. The vision behind such endeavors ranges from relatively simple web-based inspections and surveillance applications to highly versatile

applications that use robots connected to the web to establish a remote "telepresence" in dynamic and populated environments. In the latter scenario, robots play the role of a physical mediator, enabling remote people to acquire information, explore, manipulate, communicate, and interact physically with people far away.

Off-road equipment such as road graders, agricultural tractors, and mining vehicles are becoming increasingly computerized and automated. Local control networks are increasingly common in cars, trucks, and equipment and are increasing in implementation (Nieminen et al, 1993). At the same time, the number of sensors and actuators on the vehicles are also increasing. In agricultural applications, the amount of information and data needed and collected during harvesting operations is growing exponentially. The need to process this information, as well as the need to observe or control the vehicle itself lend well for the solutions int connectivity and networking.

Agriculture has always depended to a great extent on the weather and other natural forces, so the application of information technology (IT) to agriculture fields planted with food crops, pasturage, and so on has been difficult and farming has clearly lagged behind other industries and sectors in seeing the benefits of IT. Especially in Japan, where the agricultural labor force is shrinking and aging rapidly, finding ways to improve the productivity of the nation's agriculture and saving labor are more imperative than ever before. These were the main concerns inspiring researchers to investigate how farmers might benefit from the application of IT and computers.

It is difficult to apply wired networks in the agricultural sector particularly to farm fields and livestock pastures, considering the high construction cost and the disruption to farm work caused by such construction. Wireless system are highly recommended solution which has much lower initial startup costs.

Considering their great popularity in recent years and the fact that they could be applied to agriculture fields, this project first inclination was to use mobile phones. Although there are several viable systems currently available, we concluded that the calling charges would probably make the cost too high and the data transfer rate are too low for real-time video streaming.

A wireless LAN solution seemed especially appealing considering its transmission range of several kilometers and the fact that it is well supported by international standards. Wireless LANs have also come into use over the last few years to support hot-spot services in urban areas, and this has helped reduce the cost of wireless LAN equipment. Applying a wireless LAN to agriculture fields raises the issue of how it could be modified to consume less power, nevertheless concluded that a wireless LAN-based network is a key technology for applying IT to agriculture sector.

G

Overall, the major problem currently faced by the plantation industry such as oil palm, rubber and cocoa is the unavailability or inadequate labor supply. Currently the younger generation would prefer to work in the clean and nice environment instead of the hazardous plantation.

By introducing the robotic technology couple with wireless LAN communication more manpower can be reduce in agriculture sector. In addition it will reduce labor shortage and aging worker problem.

Another major problem faced by the agricultural and plantation industry in Malaysia is the inadequate technology input and technology expertise. Mechanization or the use of new technology will also reduce manpower, lighten the burden, increase productivity as well as making agricultural jobs more interesting. Along with the paradigm shift hopefully more investor will venture in to the modernize agriculture sector to create more high tech agriculture job for the young generation. The agriculture sector also will grow inline with the technology edge.

Robotic and wireless technology in agricultural industry, especially in Malaysia is still new and still under research and development. Robot and wireless LAN communication should be introduced and developed immediately in the agricultural sector especially in solving the harvesting, collection and transportation of the oil palm fresh fruit bunches and cocoa pod, tapping, collection and transportation of rubber latex. Monitoring and control of mobile harvesting robot through wireless LAN are the pioneer concept and development for the new future to resolve part of the modernize agriculture industry.

C

This research present a wireless LAN interface designed to remotely operate mobile harvesting robots in agriculture field through the web. The design of these interfaces specifically to sensing and positioning, the mover and robot arm.

Monitoring the robot movement through the real-time video system is also one of this research task. The interfaces have been tested extensively using a hydrostatic tractor and a pneumatic robot arm, which were combined as a mobile harvesting robot with the help of the CMOS web Camera.

This research also discusses trade offs and limitations of wireless LAN mobile harvesting robots that interact with people, show examples of mobile harvesting robot control in web-based and virtual-based environments. Finally, present about expansion of the wireless technology and it's applications for future work.

