UNIVERSITI PUTRA MALAYSIA

PRODUCTION, EXPRESSION AND CHARACTERIZATION OF A HEAT-STABLE ORGANIC SOLVENT TOLERANT LIPASE FROM BACILLUS SP, STRAIN 42

MOHAMRD ABDALLAH ELTAWEEL.

FBSB 2005 11
PRODUCTION, EXPRESSION AND CHARACTERIZATION OF A HEAT-STABLE ORGANIC SOLVENT TOLERANT LIPASE FROM BACILLUS SP. STRAIN 42

By

MOHAMED ABDALLAH ELTAWEEL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

October 2005
DEDICATION

I dedicate this humble effort, the fruit of my thoughts and study,

to the great and helpful wife Hawa Safar,

dear sons Abdallah, Abdulrahman, Abdalraouf

and sweet daughter Halima

who have inspired me to higher ideals of life.
Ninety two bacterial strains were isolated from oil palm effluent from Bangi, Selangor; Kluang, Johor; Alor Gajah hot spring (up to 54 °C) Melaka and Slim River hot spring (up to 91°C) Perak. An enrichment culture technique was used to isolate bacteria utilizing olive oil as a substrate. Cultures were incubated at 60°C to select for the thermophilic bacteria. Eight isolates showed lipolytic activity on tributyrin and triolein agar plates. In order to screen for highest lipase producer, six production media were used. Isolate 42 was observed to produce the highest level (0.059 U/ml) after 72h. Its crude lipase retained its full activity when preincubated at 70°C for 30 min. It also showed high stability in several organic solvents (25% v/v). Furthermore, its activity was enhanced in benzene, hexane and hexadecane while, completely inhibited by butanol. Isolate 42 was
identified as *Bacillus* sp. Strain 42 using 16S rDNA. The nucleotide sequence deposited at GenBank under accession number AY 763118.

Further optimization studies were done in order to determine the best lipase production condition. Inoculum size of 3% proved to be the best for lipase production, with an optimum temperature of 50°C when, grown under shaking condition of 150 rpm. A combination of tryptone and yeast extract was the best nitrogen source. Lipase production was stimulated by olive oil.

The lipase gene was amplified by polymerase chain reaction using consensus primers based on multiple aligned sequences of thermophilic genes from other thermophilic *Bacillus* species. Nucleotide sequence comparison shared high homology with the thermostable genes in *Geobacillus* sp., *Bacillus stearothermophilus* and *Bacillus thermoleovorans*. Nucleotide sequence deposited at GenBank under accession number AY 787835. The amplified gene was successfully cloned using a pQE-30 UA expression vector and induced by IPTG at the optimum concentration of 0.75 mM.

The recombinant lipase was facilitated by the fusion of 6-histidine and this allowed a one-step purification of the lipase enzyme using Ni-NTA affinity chromatography. The histidine-tagged lipase was purified 6-fold with a yield of 21.7%. Purified lipase migrated as a single band with a molecular mass of ~43 KDa on SDS-PAGE.
The purified lipase showed high activity at 70°C with its optimum at pH 8.0. The enzyme was stable over a broad range of pH from 6.0 to 10.0. It also showed high stability with half-lives of 315 min at 60°C, 120 min at 65°C, and 45 min at 70°C. Preincubation enzyme activity was stimulated with Na⁺, K⁺ and Ca²⁺. While, Zn²⁺, Mn²⁺ and Fe²⁺ at high concentration (10 mM) were greatly inhibitory. Protease inhibitors Bestatin and pepstatin stimulated the lipase activity while, phenylmethylsulfonyl fluoride (PMSF) completely inhibited the lipase activity. Tween 80 (0.1%) enhanced the lipase activity while higher concentration (1%) dramatically decreased the lipase activity. The activity of preincubated enzyme in heptanol (log P 2.4) and octanol (log P 2.9) was slightly enhanced while, remains very stable with other organic solvents tested. Solvents such as ethylbenzene (log P 3.1) and dodecane (log P 6.6) reduced the lipase activity up to 35% and 38%, respectively. The highest specificity was observed towards tricaprylin (C₈), followed by tricaprin (C₁₀). Its hydrolyzed all the natural oils tested, with highest hydrolysis rate on olive oil.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGHASILAN, PENGEKSPRESIAN DAN PENCIRIAN LIPASE TAHAN
PELARUT ORGANIK DAN TERMOASTABIL DARI *Bacillus* sp. Strain 42

Oleh

MOHAMED ABDALLAH ELTAWEEL

Oktober 2005

Pengerusi: Profesor Madya Raja Noor Zaliha Raja Abd Rahman, PhD
Fakulti: Bioteknologi Dan Seins Biomolekul

Sebanyak 92 strain bakteria telah dipencilkan daripada sisa kumbahan sawit yang di perolehi dari Bangi, Selangor; dan Kluang Johor, serta kolam air panas di Alor Gajah, Melaka (suhu 54°C) dan di Slim River, Perak (91 °C). Minyak zaitun sebagai substrat telah digunakan untuk memencilkan bakteria melalui kaedah pengkayaan kultur. Pengeraman pada suhu 60°C digunakan untuk menggalakkan pertumbuhan bakteria yang rintang suhu atau termofilik. Sebanyak lapan isolat telah menunjukkan aktiviti lipolitik tertinggi di atas plat agar tributirin and triolein. Di dalam media cecair, penghasilan tertinggi didapati pada strain 42. Bagi meningkatkan penghasilan lipase, sebanyak enam jenis media digunakan. Media M3 didapati menghasilkan lipase tertinggi, iaitu 0.059 U/mL pada 72 jam pengeraman, dengan kadar goncangan 150 rpm, pada suhu 60°C.
Kajian dilanjutkan bagi menentukan penghasilan terbaik enzim lipase. Inokulum bersaiz 3% terbukti menghasilkan enzim lipase tertinggi dengan suhu optimum pada 50°C. Penghasilan lipase paling tinggi adalah pada kadar gencangan 150 rpm per min. Penghasilan lipase adalah dirangsang oleh penambahan minyak zaitun sebagai substrat. Lipase mentah menunjukkan kestabilan yang tinggi sehingga mencapai suhu 70°C.

Ekstrak enzim mentah diuji terhadap beberapa pelarut organik berkepekatan 25% v/v, selama 30 min untuk menentukan kestabilannya. Peningkatan aktiviti berlaku di dalam pelarut benzena, heksana dan heksadekana, tetapi ia juga stabil di dalam pelarut toluena, xylina, dekanol, isooktana dan tetradekana. Aktiviti enzim menurun sebanyak 34.5% di dalam pelarut propanol dan 63.6% di dalam pelarut propilasetat berbanding kawalan dan direncatkan sepenuhnya oleh butanol. Gen lipase dari *Bacillus* sp. strain 42 telah digandakan melalui tindakbalas rantaian polimerase (PCR) menggunakan primer konsensus berdasarkan padanan jujukan berganda gen termofilik daripada spesis *Bacillus*. Perbandingan jujukan nukleotida menunjukkan gen lipase strain 42 mempunyai homologi yang tinggi dengan gen termostabil dari *Geobacillus* sp, *Bacillus stearothermophilus* dan *Bacillus thermoleovorans*. Gen yang digandakan ini telah berjaya diklon ke dalam vector pQE-30 UA dan telah diekspreskan dengan kehadiran IPTG pada kepekatan optimum 0.75 mM.

Penulenan enzim lipase rekombinan dipermudahkan dengan kehadiran 6-histidina pada vektor, ini membolehkan penulenan satu langkah dengan
menggunakan Ni-NTA kromatografi afiniti. Lipase pembawa histidina telah ditulenkan sebanyak 5.65 kali dengan hasilan 21.7%. Lipase rekombinan tulen bergerak sebagai satu jalur dengan jisim molekular ~43 KDa pada SDS-PAGE. Lipase tulen menunjukkan aktiviti tertinggi pada suhu 70°C dengan pH optimum 8.0. Enzim adalah stabil pada julat pH dari 6.0 ke 10.0. Ia juga menunjukkan kestabilan tertinggi dengan tempoh separuh hayat 315 min pada 60°C, 120 min pada 65°C dan 45 min pada 70°C.

Lipase tulen menghidrolisiskan kesemua minyak semulajadi yang diuji dengan kadar hidrolisis tertinggi terhadak minyak zaitun. Spesifisiti substrat tertinggi adalah terhadap trikaprilin (C₈) diikuti oleh trikaprin (C₁₀). Aktiviti lipase meningkat dengan penambahan ion logam seperti Ca⁺ dan Na⁺. Tween 80 pada kepekatan 0.1% meningkatkan aktiviti enzim tetapi aktiviti menurun pada 1%. Bestatin dan pepstatin juga meningkatkan sedikit aktiviti enzim tetapi EDTA tidak meningkatkan sebarang kesan. Sebaliknya aktiviti enzim direncatkan oleh fenilmetilsulfonifluorida iaitu perencat protease serine.
ACKNOWLEDGEMENTS

All praise is to the Almighty Allah, the Merciful and the Beneficent. Had it not been due to his will and favour, the completion of this study would not have possible.

I avail myself of this opportunity to record my sincerest thanks and appreciation to Associate Professor Dr. Raja Noor Zaliha Raja Abd Rahman, chairman of my supervisory committee, for her dedicated efforts, support, invaluable advice, intellectual guidance and encouragement in the conduct of my research and in the preparation of this thesis.

Grateful thanks are also due to my supervisory committee members, Professor Dr. Abu Bakar Salleh and Professor Dr. Mahiran Basri, for their constructive comment, advice and help throughout my studies and in the preparation of this final manuscript.

I am exceedingly grateful to the Libyan Higher Learning Popular Committee for their financial support. Thanks are also extended to all staff member in the department of Biotechnology and Biomolecular Sciences, lab mates and friends who have helped me in one way or another.

Finally, I also take this opportunity to express my deep gratitude to my affectionate Mother, brothers, sisters, helpful wife Hawa Safar, dear sons
Abdallah, Abdalrahman, Abdalraouf and sweet daughter Halima. I thank them for all their love, patience, support and encouragement throughout my study in UPM and whole life. Without their understanding and sacrifices this project would have been nigh impossible.
I certify that an Examination Committee met on 11th October 2005 to conduct the final examination of Mohamed Abdallah Eltaweel on his Doctor of Philosophy thesis entitled "Production, Expression and Characterization of a Heat-Stable Organic Solvent Tolerant Lipase from Bacillus sp. Strain 42" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Norhani Abdullah, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Raha Abdul Rahim, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Johari Ramli, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Zainul Fadziruddin Zainuddin, PhD
Professor
School of Health Sciences
Universiti Sains Malaysia
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 NOV 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follow:

Raja Noor Zaliha Raja Abd Rahman, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abu Bakar Salleh, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 08 Dec 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHAMED ABDALLAH ELTAWEEL

Date: 13.11.2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>II</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>III</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>VI</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IX</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>XII</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>XIII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XVI</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVII</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XXI</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

Objective of this study 7

2 LITERATURE REVIEW

2.1 Lipases 8

2.2 Sources of Lipases 10

2.2.1 Plant Lipases 10

2.2.2 Mammalian Lipases 11

2.2.3 Microbial Lipases 11

2.3 Thermostable Lipase 13

2.4 Organic Solvent Tolerant Lipase 16

2.5 Enzyme Catalysis in Organic Solvents 19

2.6 Selection of Organic Solvents 21

2.7 Detection and Screening of Lipolytic Microorganisms 24

2.8 Production of Microbial Lipases 27

2.9 Effect of Nutritional Factors on Lipase Production 28

2.9.1 Carbon Sources 28

2.9.2 Nitrogen Sources 30

2.9.3 Substrates 32

2.9.4 Minerals 33

2.10 Effect of Physical Factors on Lipase Production 34

2.10.1 Temperature 34

2.10.2 pH 35

2.10.3 Cultivation Period 35
2.10.4 Shaking Rate
2.11 Purification of Lipase
2.12 Properties of Purified Microbial Lipases
2.13 Substrate Specificity
 2.13.1 Positional Specificity
 2.13.2 Fatty Acid Specificity
 2.13.3 Partial Glycerides Specificity
2.14 Polymerase Chain Reaction
2.15 Primer Design
2.16 Optimization of PCR
2.17 Selection of Vector
2.18 Selection of Host
2.19 Cloning and Expression
2.20 Cloning by PCR
2.21 Direct Selection Strategy of Lipase Gene
2.22 Expression of Lipase Gene
2.23 Application of Lipases

3 MATERIALS AND METHODS

3.1 Materials
3.2 Methods
 3.2.1 Preparation of Media and Solutions
 3.2.2 Bacterial Sources
 3.2.3 Enrichment Culture Technique
 3.2.4 Isolation of Bacteria
 3.2.5 Screening of Lipase Producing Microorganisms
 3.2.6 Slant Agar Stock Culture
 3.2.7 Glycerol Stock Culture
 3.2.8 Preparation of Inoculum
 3.2.9 Assay of Lipase Activity
 3.2.10 Effect of Different Liquid Media on Lipase Production
 3.2.11 Effect of Temperature on Crude Enzyme Stability
 3.2.12 Effect of Organic Solvents on Crude Enzyme Stability
 3.2.13 Bacterial Identification
 3.2.14 Growth Curve and Lipase Production of Bacillus sp. Isolate 42
 3.2.15 Growth Optimization Study for Maximum Enzyme Production
 3.2.16 Physical Factors Affecting the Growth and Lipase Production by Bacillus sp. Isolate 42
 3.2.17 Nutritional Factors Affecting the Growth and Lipase Production by Bacillus sp. Isolate 42
 3.2.18 Cloning and Sequencing of Thermostable Organic
Solvent Tolerant Lipase Gene
3.2.19 Amplification of Thermostable Organic Solvent Tolerant Lipase Gene by PCR 95
3.2.20 PCR Amplification of the Lipase Gene from Genomic DNA 97
3.2.21 Purification of the Amplified PCR Product 99
3.2.22 Preparation of Competent *E. coli* 100
3.2.23 Cloning PCR Product using pQE-30 UA Vector 100
3.2.24 Transformation 101
3.2.25 Plasmid Isolation 101
3.2.26 Analysis of Positive Colonies 102
3.2.27 Stock Culture 103
3.2.28 Expression of Recombinant Thermostable Organic Solvent Tolerant Lipase Gene 103
3.2.29 Preparation of Culture Supernatant and Cell Extract 104
3.2.30 SDS-PAGE Analysis of Bacteria Protein 105
3.2.31 Optimum IPTG Concentration for Expression 106
3.2.32 Assay of Recombinant Lipase Activity 107
3.2.33 Purification of Thermostable Organic Solvent Tolerant Recombinant Lipase 107
3.2.34 Protein Determination 109
3.2.35 Characterization of Purified Thermostable Organic Solvent Tolerant Recombinant Lipase 109

4 RESULTS AND DISCUSSION 117

4.1 Isolation and Screening of Thermophilic Lipolytic Bacteria 117
4.2 Effects of Different Liquid Media on Lipase Production 118
4.3 Effect of Temperature on Crude Enzyme Stability 125
4.4 Effect of Organic Solvents on the Crude Lipase Activity 126
4.5 Bacterial Identification 130
4.5.1 16S rDNA Identification and Phylogenetic Tree Analysis 130
4.6 Growth Curve and Lipase Production by *Bacillus* sp. Isolate 42 138
4.7 Effects of Physical Factors on Growth and Lipase Production 141
4.7.1 Temperature 141
4.7.2 Agitation 143
4.7.3 pH 146
4.7.4 Inoculum Size 148
4.7.5 Medium Volume 150
4.8 Effect of Nutritional Factors on growth and Lipase Production 151
4.8.1 Carbon Sources 151
4.8.2 Inorganic Nitrogen Sources 156
4.8.3 Organic Nitrogen Sources 156

XVI
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The log P Value of Common Solvents</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Properties of Purified Lipases from some Bacterial Sources</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Preparation of Free Fatty Acid Solutions</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Bovine Serum Albumin Solutions</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>Thermophillic Lipase Producer from Bacillus sp Precursors</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Nuculeotide Sequences Extracted from the NCBI Database.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oligonucleotide Used as Primers for Specific Amplification of</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Genes Encoding for Organic Tolerant Lipase Gene Fragments</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Screening the Activity of Lipolytic Thermophilic Bacteria Isolated</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>from Different Local Regions in Malaysia</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Effect of Different Liquid Media on the Isolates Lipase Production</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>Effect of Different Organic Solvents on Strain 42 Crude Lipase Activity</td>
<td>129</td>
</tr>
<tr>
<td>10</td>
<td>Summary of the Purification Recombinant 6 x His-tagged Lipase Produced with</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>E. coli M15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Effect of Organic Solvents on Lipase Stability</td>
<td>227</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrolytic and Synthetic Action of Lipase</td>
</tr>
<tr>
<td>2</td>
<td>Schematic Diagram of the PCR Process</td>
</tr>
<tr>
<td>3</td>
<td>Standard Curve for the Determination of Free Fatty Acid</td>
</tr>
<tr>
<td>4</td>
<td>Standard Curve for Protein Determination</td>
</tr>
<tr>
<td>5</td>
<td>Flow Chart for Lipase Assay Producer</td>
</tr>
<tr>
<td>6</td>
<td>Bacillus sp. Isolate 42 Streaked on Tributyrin Plate with Control</td>
</tr>
<tr>
<td>7</td>
<td>Bacillus sp. Isolate 42 Streaked on Triolein Plate with Control</td>
</tr>
<tr>
<td>8</td>
<td>Bacillus sp. Isolate 42 Streaked on Rhodamine Plate with Control</td>
</tr>
<tr>
<td>9</td>
<td>Relative Stability of the Crude Lipase from Isolate 42</td>
</tr>
<tr>
<td>10</td>
<td>PCR Product of 16S rDNA Gene (1500 bp) from Isolate 42 Amplified using Universal Primers</td>
</tr>
<tr>
<td>11</td>
<td>16S rDNA Sequence of Bacillus sp. Strain 42</td>
</tr>
<tr>
<td>12</td>
<td>Comparison of 16S rDNA from Bacillus sp. BGSC W9A6 (AY 608903), Bacillus sp. BGSC W9A22 (AY 608987) and Bacillus sp Strain 42(AY 763118).</td>
</tr>
<tr>
<td>13</td>
<td>Rooted Phylogenetic Tree Showing the Relationships of Bacillus sp. Strain 42 to other Bacillus spp.</td>
</tr>
<tr>
<td>14</td>
<td>Time Profile of Lipase Production by Bacillus sp. Strain 42</td>
</tr>
<tr>
<td>15</td>
<td>Effect of Temperature on Growth and Lipase</td>
</tr>
<tr>
<td>16</td>
<td>Effect of Agitation on Bacterial population and Lipase production</td>
</tr>
<tr>
<td>17</td>
<td>Effect of pH on Bacterial Growth and Lipase Production</td>
</tr>
<tr>
<td>18</td>
<td>Effect of Inoculum Size on Bacterial Growth and Lipase</td>
</tr>
</tbody>
</table>
19 Effect of Medium Volume on Bacterial Growth and Lipase Production 152

20 Effects of Carbon Sources on the Growth and Lipase Production by *Bacillus* sp. Strain 42 153

21 Effect of Inorganic Nitrogen Sources on Growth and Lipase Production by *Bacillus* sp. Isolate 42. 157

22 Effect of Organic Nitrogen Sources on Growth and Lipase Production by *Bacillus* sp. Strain 42. 159

23 Effects of Tryptone with some Other Nitrogen Sources on Bacterial Growth and Lipase Production by *Bacillus* sp. Strain 42. 162

24 Effects of Different Concentrations of Tryptone and Yeast extract on Growth and Lipase Production by *Bacillus* sp. Isolate 42. 163

25 Effect of Metal Ions (Ca^{2+}, Mg^{2+} and Fe^{3+}, Individually and in Combination, on the Growth and Lipase Production by *Bacillus* sp. Strain 42. 165

26 Effect of Heavy Metal Ions on the Growth and Lipase Production by *Bacillus* sp. Isolate 42. 167

27 Effects of Substrates on the Growth and Lipase Production by *Bacillus* sp. Strain 42. 168

28 Effect of Tween on the Growth and Lipase Production by *Bacillus* sp. Isolate 42. 170

29 Genomic DNA Extraction from Strain 42 173

30 PCR Product of 308 bp Amplified by Using Hlip F1 and Hlip R1 Primers 175

31 PCR Product of 812 bp Amplified by Using Hlip F2 and Hlip R2 Primers 176

32 PCR Product of 771 bp Amplified by Using lip F12 and Hlip R 2 Primers 177

33 PCR Product of 790 bp Amplified by Using Hlip F2 and lip R8 Primers 178
34 PCR Product of 1251 bp Amplified by Using lip F12 and lip R12 Primers

35 Nucleotide and Deduced Amino Acid Sequences of Thermostable

36 The Putative Signal Peptide Cleavage Site

37 Comparison of the Amino Acids Sequence of Lipase Gene from Bacillus sp. Strain 42 with other Thermophilic Lipases Sequence Obtained from GenBank.

38 pQE-30 UA Vector

39 Clearing Zone of E. coli M 15 Harboring Thermostable Organic Solvent Tolerant Lipase Gene on Tributyrin Plate

40 Experimental Procedure of Cloning the Thermostable Lipase Gene of Bacillus sp. Strain 42

41 Cloning and Sequence Strategy of the Cloned Fragments by pQE-30 UA vector

42 Intensive Zone of E. coli M 15 Harboring Thermostable Organic Solvent Tolerant Lipase Gene on Triolein Plate

43 Orange Fluorescence Halo of E. coli M 15 Harboring Thermostable Organic Solvent Tolerant Lipase Gene on Rhodamine Plate

44 Double Digestion of Recombinant pQE-30 UA Vector

45 Expression of Thermostable Organic Solvent Tolerant Lipase by pQE-30 UA Vector

46 SDS-PAGE of Bacterial Proteins Analysis

47 Effect of different IPTG Concentration at 3h Induction in E. coli Harboring Bacillus sp. Strain 42 Lipase Gene

48 Immobilization Metal Affinity Chromatography of Recombinant 6 x His-tagged Lipase

49 SDS-PAGE of the Purified sp. 42 Lipase

50 Estimation of the Molecular Weight of the Purified Lipase by Gel
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POME</td>
<td>Palm Oil Mill Effluent</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled Water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Deoxynucleotide Triphosphates</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>mM</td>
<td>Millimole</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram per Liter</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>pmol</td>
<td>Picomole</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>μl</td>
<td>Microliter</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>μmole</td>
<td>Micromole</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per Minute</td>
</tr>
<tr>
<td>xg</td>
<td>Gravity</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-Thiogalactopyranoside</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4chloro-3-indolyl-β-D galactopyranoside</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>GTE</td>
<td>Glucose Tris-HCl-EDTA</td>
</tr>
<tr>
<td>PCI</td>
<td>Phenol Chloroform Isoamylalcohol</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>APS</td>
<td>Amonium Persulphate</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic Acid</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptone Soy Broth</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>U/mL</td>
<td>Unit per Milliliter</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony Form Units</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per Volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per Volume</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>psi</td>
<td>Pound Persquare Inch</td>
</tr>
<tr>
<td>bp</td>
<td>Base Pair</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Nickle-nitrilotriacetate acid</td>
</tr>
<tr>
<td>Kbp</td>
<td>Kilo Base Pair</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>KDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere</td>
</tr>
<tr>
<td>sp</td>
<td>Specie</td>
</tr>
<tr>
<td>spp</td>
<td>Species</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
</tbody>
</table>